Дом, дизайн, ремонт, декор. Двор и сад. Своими руками

Дом, дизайн, ремонт, декор. Двор и сад. Своими руками

» » Прикладная молекулярная биология. Профессия молекулярный биолог Профессия после диплома

Прикладная молекулярная биология. Профессия молекулярный биолог Профессия после диплома

(Molekularbiologe/-biologin)

  • Тип

    Профессия после диплома
  • Зарплата

    3667-5623 € в мес
Молекулярные биологи исследуют молекулярные процессы как основу всех жизненных процессов. На основании полученных результатов они разрабатывают концепции использования биохимических процессов, например, в медицинских исследованиях и диагностике или в биотехнологии. Кроме того, они могут быть вовлечены в производство фармацевтических продуктов, разработку продуктов, обеспечение качества или фармацевтический консалтинг.

Обязанности Молекулярного Биолога

Молекулярные биологи могут работать в разных областях. Например, они касаются использования результатов исследований для производства в таких областях, как генная инженерия, химия белка или фармакология (открытие лекарств). В химической и фармацевтической промышленности они способствуют внедрению недавно разработанных продуктов из исследований в производство, сбыта продукции и консультирования пользователей.

В научных исследованиях молекулярные биологи изучают химико-физические свойства органических соединений, а также химические процессы (в области клеточного метаболизма) в живых организмах и публикуют результаты исследований. В высших учебных заведениях они обучают студентов, готовятся к лекциям и семинарам, проверяют письменную работу и принимают экзамены. Самостоятельная научная деятельность возможна только после получения степени магистра и доктора наук.

Где работают Молекулярные Биологи

Молекулярные биологи находят работу, например

  • в научно-исследовательских институтах, например, в областях науки и медицины
  • в высших учебных заведениях
  • в химико-фармацевтической промышленности
  • в департаментах по охране окружающей среды

Зарплата Молекулярного Биолога

Уровень зарплаты, которую получают Молекулярные Биологи в Германии составляет

  • от 3667€ до 5623€ в мес

(по данным различных статистических бюро и служб занятости в Германии)

Задачи и обязанности Молекулярного Биолога в подробностях

В чем суть профессии Молекулярный Биолог

Молекулярные биологи исследуют молекулярные процессы как основу всех жизненных процессов. На основании полученных результатов они разрабатывают концепции использования биохимических процессов, например, в медицинских исследованиях и диагностике или в биотехнологии. Кроме того, они могут быть вовлечены в производство фармацевтических продуктов, разработку продуктов, обеспечение качества или фармацевтический консалтинг.

Призвание Молекулярная биология

Молекулярная биология или молекулярная генетика занимается изучением структуры и биосинтеза нуклеиновых кислот и процессов, связанных с передачей и реализацией этой информации в форме белков. Это позволяет понять болезненные нарушения этих функций и, возможно, вылечить их с помощью генной терапии. Существуют интерфейсы для биотехнологии и генной инженерии, в которых создаются простые организмы, такие как бактерии и дрожжи, чтобы сделать вещества, представляющие фармакологический или коммерческий интерес, доступными в промышленном масштабе благодаря целевым мутациям.

Теория и практика Молекулярной Биологии

Химико-фармацевтическая промышленность предлагает многочисленные области занятости для молекулярных биологов. В промышленных условиях они анализируют процессы биотрансформации или разрабатывают и улучшают процессы микробиологического производства активных ингредиентов и фармацевтических промежуточных продуктов. Кроме того, они участвуют в переходе недавно разработанных продуктов из стадии исследований в производство. Выполняя задачи проверки, они гарантируют, что производственные мощности, оборудование, аналитические методы и все этапы производства чувствительных продуктов, таких как фармацевтические препараты, всегда соответствуют требуемым стандартам качества. Кроме того, молекулярные биологи консультируют пользователей по использованию новых продуктов.

Для руководящих должностей часто требуется магистерская программа.

Молекулярные Биологи в Научных исследованиях и Образовании

В области науки и исследований молекулярные биологи занимаются такими темами, как распознавание, транспорт, свертывание и кодификация белков в клетке. Результаты исследований, которые являются основой для практического применения в различных областях, публикуют их и, таким образом, делают их доступными для других ученых и студентов. На конференциях и конгрессах они обсуждают и презентуют результаты научной деятельности. Молекулярные биологи проводят лекции и семинары, руководят научной работой и принимают экзамены.

Самостоятельная научная деятельность требует степени магистра и доктора.

1. Введение.

Предмет, задачи и методы молекулярной биологии и генетики. Значение "классической" генетики и генетики микроорганизмов в становлении молекулярной биологии и генной инженерии. Понятие гена в "классической" и молекулярной генетике, его эволюция. Вклад методологии генной инженерии в развитие молекулярной генетики. Прикладное значение генной инженерии для биотехнологии.

2. Молекулярные основы наследственности.

Понятие о клетке, ее макромолекулярный состав. Природа генетического материала. История доказательства генетической функции ДНК.

2.1. Различные виды нуклеиновых кислот. Биологические функции нуклеиновых кислот. Химическое строение, пространственная структура и физические свойства нуклеиновых кислот. Особенности строения генетического материала про - и эукариот. Комплементарные пары оснований Уотсона-Крика. Генетический код. История расшифровки генетического кода. Основные свойства кода: триплетность, код без запятых, вырожденность. Особенности кодового словаря, семьи кодонов, смысловые и «бессмысленные» кодоны. Кольцевые молекулы ДНК и понятие о сверхспирализации ДНК. Топоизомеры ДНК и их типы. Механизмы действия топоизомераз. ДНК-гираза бактерий.

2.2. Транскрипция ДНК. РНК-полимераза прокариот, ее субъединичная и трехмерная структуры. Разнообразие сигма-факторов. Промотор генов прокариот, его структурные элементы. Стадии транскрипционного цикла. Инициация, образование “открытого комплекса”, элонгация и терминация транскрипции. Аттенюация транскрипции. Регуляция экспрессии триптофанового оперона. “Рибопереключатели”. Механизмы терминации транскрипции. Негативная и позитивная регуляция транскрипции. Лактозный оперон. Регуляция транскрипции в развитии фага лямбда. Принципы узнавания ДНК регуляторными белками (САР-белок и репрессор фага лямбда). Особенности транскрипции у эукариот. Процессинг РНК у эукариот. Кепирование, сплайсинг и полиаденилирование транскриптов. Механизмы сплайсинга. Роль малых ядерных РНК и белковых факторов. Альтернативный сплайсинг, примеры.

2.3. Трансляция , ее этапы, функция рибосом. Локализация рибосом в клетке. Прокариотический и эукариотический типы рибосом; 70S и 80S рибосомы. Морфология рибосом. Подразделение на субчастицы (субъединицы). Кодон-зависимое связывание аминоацил-тРНК в элонгационном цикле. Кодон-антикодоновое взаимодействие. Участие фактора элонгации EF1 (EF-Tu) в связывании аминоацил-тРНК с рибосомой. Фактор элонгации EF1В (EF-Ts), его функция, последовательность реакций с его участием. Антибиотики, воздействующие на этап кодон-зависимого связывания аминоацил-тРНК с рибосомой. Аминогликозидые антибиотики (стрептомицин, неомицин, канамицин, гентамицин и др.), механизм их действия. Тетрациклины как ингибиторы связывания аминоацил-тРНК с рибосомой. Инициация трансляции. Основные этапы процесса инициации. Инициация трансляции у прокариот: факторы инициации, инициаторные кодоны, 3¢-конец РНК малой рибосомной субчастицы и последовательность Шайна-Дальгарно в мРНК. Инициация трансляции у эукариот: факторы инициации, инициаторные кодоны, 5¢-нетранслируемая область и кэп-зависимая «концевая» инициация. «Внутренняя» кэп-независимая инициация у эукариот. Транспептидация. Ингибиторы транспептидации: хлорамфеникол, линкомицин, амицетин, стрептограмины, анизомицин. Транслокация. Участие фактора элонгации EF2 (EF-G) и ГТФ. Ингибиторы транслокации: фусидовая кислота, виомицин, их механизмы действия. Терминация трансляции. Терминирующие кодоны. Белковые факторы терминации прокариот и эукариот; два класса факторов терминации и механизмы их действия. Регуляция трансляции у прокариот.

2.4. Репликация ДНК и ее генетический контроль. Полимеразы, участвующие в репликации, характеристика их ферментативных активностей. Точность воспроизведения ДНК. Роль стерических взаимодействий между парами оснований ДНК при репликации. Полимеразы I, II и III E. coli. Субъединицы полимеразы III. Вилка репликации, “ведущая” и “отстающая” нити при репликации. Фрагменты Оказаки. Комплекс белков в репликационной вилке. Регуляция инициации репликации у E. соli. Терминация репликации у бактерий. Особенности регуляции репликации плазмид. Двунаправленная репликация и репликация по типу катящегося кольца.

2.5. Рекомбинация , ее типы и модели. Общая или гомологичная рекомбинация. Двухнитевые разрывы ДНК, инициирующие рекомбинацию. Роль рекомбинации в пострепликативной репарации двухнитевых разрывов. Структура Холлидея в модели рекомбинации. Энзимология общей рекомбинации у E. coli. RecBCD комплекс. RecA белок. Роль pекомбинации в обеспечении синтеза ДНК при повреждениях ДНК, прерывающих репликацию. Рекомбинация у эукариот. Ферменты рекомбинации у эукариот. Сайт-специфичная рекомбинация. Различия молекулярных механизмов общей и сайт-специфичной рекомбинации. Классификация рекомбиназ. Типы хромосомных перестроек, осуществляемых при сайт-специфичной рекомбинации. Регуляторная роль сайт-специфичной рекомбинации у бактерий. Конструирование хромосом многоклеточных эукариот с помощью системы сайт-специфичной рекомбинации фага.

2.6. Репарация ДНК. Классификация типов репарации. Прямая репарация тиминовых димеров и метилированного гуанина. Вырезание оснований. Гликозилазы. Механизм репарации неспаренных нуклеотидов (mismatch репарация). Выбор репарируемой нити ДНК. SOS-репарация. Свойства ДНК полимераз, участвующих в SOS-репарации у прокариот и эукариот. Представление об “адаптивных мутациях” у бактерий. Репарация двухнитевых разрывов: гомологичная пострепликативная рекомбинация и объединение негомологичных концов молекулы ДНК. Взаимосвязь процессов репликации, рекомбинации и репарации.

3. Мутационный процесс.

Роль биохимических мутантов в формировании теории один ген – один фермент. Классификация мутаций. Точковые мутации и хромосомные перестройки, механизм их образования. Спонтанный и индуцированный мутагенез. Классификация мутагенов. Молекулярный механизм мутагенеза. Взаимосвязь мутагенеза и репарации. Идентификация и селекция мутантов. Супрессия: внутригенная, межгенная и фенотипическая.

4. Внехромосомные генетические элементы.

Плазмиды, их строение и классификация. Половой фактор F, его строение и жизненный цикл. Роль фактора F в мобилизации хромосомного переноса. Образование доноров типа Hfr и F". Механизм конъюгации. Бактериофаги, их структура и жизненный цикл. Вирулентные и умеренные бактериофаги. Лизогения и трансдукция. Общая и специфическая трансдукция. Мигрирующие генетические элементы: транспозоны и IS-последовательности, их роль в генетическом обмене. ДНК-транспозоны в геномах прокариот и эукариот. IS-последовательности бактерий, их структура. IS-последовательности как компонент F-фактора бактерий, определяющего способность передачи генетического материала при конъюгации. Транспозоны бактерий и эукариотических организмов. Прямой нерепликативный и репликативный механизмы транспозиций. Представление о горизонтальном переносе транспозонов и их роли в структурных перерстройках (эктопическая рекомбинация) и в эволюции генома.

5. Исследование структуры и функции гена.

Элементы генетического анализа. Цис-транс комплементационный тест. Генетическое картирование с использованием конъюгации, трансдукции и трансформации. Построение генетических карт. Тонкое генетическое картирование. Физический анализ структуры гена. Гетеродуплексный анализ. Рестрикционный анализ. Методы секвенирования. Полимеразная цепная реакция. Выявление функции гена.

6. Регуляция экспрессии генов. Концепции оперона и регулона. Контроль на уровне инициации транскрипции. Промотор, оператор и регуляторные белки. Позитивный и негативный контроль экспрессии генов. Контроль на уровне терминации транскрипции. Катаболит-контролируемые опероны: модели лактозного, галактозного, арабинозного и мальтозного оперонов. Аттенюатор-контролируемые опероны: модель триптофанового оперона. Мультивалентная регуляция экспрессии генов. Глобальные системы регуляции. Регуляторный ответ на стрессы. Посттранскрипционный контроль. Сигальная трансдукция. Регуляция с участием РНК: малые РНК, сенсорные РНК.

7. Основы генной инженерии. Ферменты рестрикции и модификации. Выделение и клонирование генов. Векторы для молекулярного клонирования. Принципы конструирования рекомбинантных ДНК и их введения в реципиентные клетки. Прикладные аспекты генной инженерии.

а). Основная литература:

1. Уотсон Дж., Туз Дж., Рекомбинантные ДНК: Краткий курс. – М.: Мир, 1986.

2. Гены. – М.: Мир. 1987.

3. Молекулярная биология: структура и биосинтез нуклеиновых кислот. / Под ред. . – М. Высшая шк. 1990.

4. , – Молекулярная биотехнология. М. 2002.

5. Спирин рибосомы и биосинтез белка. – М.: Высшая школа, 1986.

б). Дополнительная литература:

1. Хесин генома. – М.: Наука. 1984.

2. Рыбчин генетической инженерии. – СПб.: СПбГТУ. 1999.

3. Патрушев генов. – М.: Наука, 2000.

4. Современная микробиология. Прокариоты (в 2-х тт.). – М.: Мир, 2005.

5. М. Сингер, П. Берг. Гены и геномы. – М.: Мир, 1998.

6. Щелкунов инженерия. – Новосибирск: Из-во Сиб. Унив., 2004.

7. Степанов биология. Структура и функции белков. – М.: В. Ш., 1996.

Молекулярная биология / м ə л ɛ к J ʊ л ər / является ветвью биологии , что касается молекулярной основы биологической активности между биомолекул в различных системах клетки , в том числе взаимодействий между ДНК , РНК , белков и их биосинтеза , а также регулирование этих взаимодействий. Запись в природе в 1961 году, Астбери описал молекулярную биологию:

Не столько техника, как подход, подход с точки зрения так называемых фундаментальных наук с ведущей идеей поиска ниже крупномасштабных проявлений классической биологии для соответствующего молекулярного плана. Он обеспокоен тем, в частности, с формами биологических молекул и [...] преимущественно трехмерным и структурно - что не означает, однако, что это всего лишь уточнение морфологии. Он должен в то же время исследовать генезис и функции.

Отношение к другим биологическим наукам

Исследователи в области молекулярной биологии используют специфические методы произрастающих молекулярной биологии, но все больше и больше комбинировать их с методами и идеями от генетики и биохимии . Существует не определенная грань между этими дисциплинами. Это показано на следующей схеме, которая изображает один возможный вид отношений между полями:

  • Биохимия является изучение химических веществ и жизненно важных процессовпроисходящих в живых организмах . Биохимики тяжело сосредоточиться на роли, функции и структуры биомолекул . Изучение химии за биологических процессов и синтеза биологически активных молекулявляются примерами биохимии .
  • Генетика является изучение влияния генетических различий в организмах. Это часто может быть выведенотсутствии нормальной компоненты (напримеродин ген). Изучение « мутанты » - организмыкоторыеимеют один или более функциональные компоненты по отношению к так называемому « дикому типу » или нормальному фенотипу . Генетические взаимодействия ( эпистаз) часто путают простые интерпретации таких « нокаут » исследования.
  • Молекулярная биология является изучение молекулярных основ процессов репликации , транскрипции , трансляции и функции клеток. Центральная догма молекулярной биологии , где генетический материал транскрибируется в РНК и затем транслируется в белок , несмотрятоупрощенно,прежнему обеспечивает хорошую начальную точку для понимания поля. Картина была пересмотрена в свете возникающих новых ролей для РНК .

Методы молекулярной биологии

Молекулярное клонирование

Одним из самых основных методов молекулярной биологии для изучения функции белка является молекулярным клонированием . В этой технике, ДНК, кодирующий белок, представляющего интерес, клонированной с помощью полимеразной цепной реакции (ПЦР), и / или ферменты рестрикции в плазмиде (вектора экспрессии ,). Вектор имеет 3 отличительные особенности: начало репликации, а сайт множественного клонирования (MCS), и селективный маркер, как правило, с устойчивостью к антибиотикам . Расположенные выше сайт множественного клонирования являются промоторными областями и транскрипции сайта инициации, которые регулируют экспрессию клонированного гена. Эта плазмида может быть вставлена в либо бактериальные или животных клеток. Введение ДНК в бактериальные клетки может быть сделано путем трансформации с помощью поглощения голой ДНК, конъюгаций с помощью межклеточных контактов или путем трансдукции с помощью вирусного вектора. Введение ДНК в эукариотические клетки, такие как клетки животных, с помощью физических или химических средств, называется трансфекцией . Несколько различных методов трансфекции доступны, такие как фосфат кальция трансфекции, электропорации , микроинъекции и липосомальной трансфекции . Плазмида может быть интегрирована в геном , что приводит к стабильной трансфекции, или может оставаться независимыми от генома, называемого переходными процессы трансфекции.

ДНК, кодирующие белки, представляющего интереса, в настоящее время внутри клетки, и белки , теперь могут быть выражены. Разнообразные системы, такие как индуцибельные промоторы и специфических клеточных сигнальных факторов, которые помогут выразить интерес белок на высоких уровнях. Большие количества белка могут быть затем извлечены из бактериальной или эукариотической клетки. Белок может быть проверен на ферментативную активность при различных ситуациях, белка можно кристаллизовать поэтому его третичная структура может быть изучена, или, в фармацевтической промышленности, активность новых препаратов против белка может быть изучена.

Полимеразной цепной реакции

Макромолекулы-блоттинга и исследование

Термины северный , западный и восточный блоттинг получает из, что первоначально была молекулярная биология шутка, которая играла на термине Саузернет , после методики, описанной Edwin Southern для гибридизации BLOTTED ДНК. Патриция Томас, разработчик РНК - блоттинга, который затем стал известен как северному - блоттинга , на самом деле не использовать этот термин.

Саузернблоттинг

Названный в честь его изобретателя, биолог Эдвин Южный , то Саузерн - блот представляет собой метод для исследования на наличие специфической последовательности ДНК в образце ДНК. Образцы ДНК до или после фермента рестрикции (рестриктаз) перевариваний разделены с помощью электрофореза в геле, а затем переносили на мембрану с помощью блоттинга с помощью капиллярного действия . Мембрану затем подвергают воздействию меченого ДНК - зонда, который имеет последовательность оснований дополнением к последовательности на ДНК, представляющей интерес. Саузерн - блоттинг менее широко используется в научной лаборатории из - за способности других методов, таких как ПЦР , для обнаружения специфических последовательностей ДНК из образцов ДНК. Эти блоты все еще используются для некоторых применений, однако, таких как измерение трансгена числа копий в трансгенных мышах или в инженерии гена нокаутных линий эмбриональных стволовых клеток .

Северный блоттинга

Northern блот диаграмма

Восточно-блоттинга

Клинические исследования и медицинские методы лечения, вытекающие из молекулярной биологии, частично охвачены генной терапии . Применение молекулярной биологии или молекулярных клеточная биология подходов в медицине теперь называется молекулярной медициной . Молекулярная биология также играет важную роль в понимании образования, действий и нормативных актов различных частей клеток , которые могут быть использованы для эффективных предназначаться новые лекарства , болезнь диагноза и понять физиологию клетки.

дальнейшее чтение

  • Cohen, SN, Чанг, НКД, Бойер, H. & Heling, RB Конструирование биологически функциональных бактериальных плазмид в пробирке .

Молекулярная биология пережила период бурного развития собственных методов исследования, которыми теперь отличается от биохимии. К ним, в частности, относятся методы генной инженерии , клонирования , искусственной экспрессии и нокаута генов . Поскольку ДНК является материальным носителем генетической информации, молекулярная биология значительно сблизилась с генетикой , и на стыке образовалась молекулярная генетика , являющаяся одновременно разделом генетики и молекулярной биологии. Так же, как молекулярная биология широко применяет вирусы как инструмент исследования, в вирусологии для решения своих задач используют методы молекулярной биологии. Для анализа генетической информации привлекается вычислительная техника, в связи с чем появились новые направления молекулярной генетики, которые иногда считают особыми дисциплинами: биоинформатика , геномика и протеомика .

История развития

Это основополагающее открытие было подготовлено длительным этапом исследований генетики и биохимии вирусов и бактерий .

В 1928 году Фредерик Гриффит впервые показал, что экстракт убитых нагреванием болезнетворных бактерий может передавать признак патогенности неопасным бактериям. Исследование трансформации бактерий в дальнейшем привело к очистке болезнетворного агента, которым, вопреки ожиданиям, оказался не белок , а нуклеиновая кислота . Сама по себе нуклеиновая кислота не опасна, она лишь переносит гены, определяющие патогенность и другие свойства микроорганизма.

В 50-х годах XX века было показано, что у бактерий существует примитивный половой процесс, они способны обмениваться внехромосомной ДНК, плазмидами . Открытие плазмид, как и трансформации , легло в основу распространённой в молекулярной биологии плазмидной технологии . Ещё одним важным для методологии открытием стало обнаружение в начале XX века вирусов бактерий, бактериофагов . Фаги тоже могут переносить генетический материал из одной бактериальной клетки в другую. Заражение бактерий фагами приводит к изменению состава бактериальной РНК . Если без фагов состав РНК сходен с составом ДНК бактерии, то после заражения РНК становится больше похожа на ДНК бактериофага. Тем самым было установлено, что структура РНК определяется структурой ДНК. В свою очередь, скорость синтеза белка в клетках зависит от количества РНК-белковых комплексов. Так была сформулирована центральная догма молекулярной биологии : ДНК ↔ РНК → белок.

Дальнейшее развитие молекулярной биологии сопровождалось как развитием её методологии, в частности, изобретением метода определения нуклеотидной последовательности ДНК (У. Гилберт и Ф. Сенгер , Нобелевская премия по химии 1980 года), так и новыми открытиями в области исследований строения и функционирования генов (см. История генетики). К началу XXI века были получены данные о первичной структуре всей ДНК человека и целого ряда других организмов, наиболее важных для медицины, сельского хозяйства и научных исследований, что привело к возникновению нескольких новых направлений в биологии: геномики, биоинформатики и др.

См. также

  • Молекулярная биология (журнал)
  • Транскриптомика
  • Молекулярная палеонтология
  • EMBO - Европейская организация молекулярных биологов

Литература

  • Сингер М., Берг П. Гены и геномы. - Москва, 1998.
  • Стент Г., Кэлиндар Р. Молекулярная генетика. - Москва, 1981.
  • Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning. - 1989.
  • Патрушев Л. И. Экспрессия генов. - М.: Наука, 2000. - 000 с., ил. ISBN 5-02-001890-2

Ссылки


Wikimedia Foundation . 2010 .

  • Ардатовский район Нижегородской области
  • Арзамасский район Нижегородской области

Смотреть что такое "Молекулярная биология" в других словарях:

    МОЛЕКУЛЯРНАЯ БИОЛОГИЯ - изучает осн. свойства и проявления жизни на молекулярном уровне. Важнейшими направлениями в М. б. являются исследования структурно функциональной организации генетического аппарата клеток и механизма реализации наследственной информации… … Биологический энциклопедический словарь

    МОЛЕКУЛЯРНАЯ БИОЛОГИЯ - исследует основные свойства и проявления жизни на молекулярном уровне. Выясняет, каким образом и в какой мере рост и развитие организмов, хранение и передача наследственной информации, превращение энергии в живых клетках и др. явления обусловлены … Большой Энциклопедический словарь

    МОЛЕКУЛЯРНАЯ БИОЛОГИЯ Современная энциклопедия

    МОЛЕКУЛЯРНАЯ БИОЛОГИЯ - МОЛЕКУЛЯРНАЯ БИОЛОГИЯ, биологическое изучение строения и функционирования МОЛЕКУЛ, из которых состоят живые организмы. К основным сферам изучения относятся физические и химические свойства белков и НУКЛЕИНОВЫХ КИСЛОТ, таких как ДНК. см. также… … Научно-технический энциклопедический словарь

    молекулярная биология - раздел биол., который исследует основные свойства и проявления жизни на молекулярном уровне. Выясняет, каким образом и в какой мере рост и развитие организмов, хранение и передача наследственной информации, превращение энергии в живых клетках и… … Словарь микробиологии

    молекулярная биология - — Тематики биотехнологии EN molecular biology … Справочник технического переводчика

    Молекулярная биология - МОЛЕКУЛЯРНАЯ БИОЛОГИЯ, исследует основные свойства и проявления жизни на молекулярном уровне. Выясняет, каким образом и в какой мере рост и развитие организмов, хранение и передача наследственной информации, превращение энергии в живых клетках и… … Иллюстрированный энциклопедический словарь

    Молекулярная биология - наука, ставящая своей задачей познание природы явлений жизнедеятельности путём изучения биологических объектов и систем на уровне, приближающемся к молекулярному, а в ряде случаев и достигающем этого предела. Конечной целью при этом… … Большая советская энциклопедия

    МОЛЕКУЛЯРНАЯ БИОЛОГИЯ - изучает явления жизни на уровне макромолекул (гл. обр. белков и нуклеиновых к т) в бесклеточных структурах (рибосомы и др.), в вирусах, а также в клетках. Цель М. б. установление роли и механизма функционирования этих макромолекул на основе… … Химическая энциклопедия

    молекулярная биология - исследует основные свойства и проявления жизни на молекулярном уровне. Выясняет, каким образом и в какой мере рост и развитие организмов, хранение и передача наследственной информации, превращение энергии в живых клетках и другие явления… … Энциклопедический словарь

Книги

  • Молекулярная биология клетки. Сборник задач , Дж. Уилсон, Т. Хант. Книга американских авторов - приложение ко 2 - му изданию учебника `Молекулярная биология клетки` Б. Албертса, Д. Брея, Дж. Льюиса и др. Содержит вопросы и задачи, цель которых - углубить…

Успехи в изучении нуклеиновых кислот и биосинтеза белка привели к созданию ряда методов, имеющих большое прикладное значение в медицине, сельском хозяйстве и ряде других отраслей.

После того, как был изучен генетический код и основные принципы хранения и реализации наследственной информации, развитие молекулярной биологии зашло в тупик, так как не было методов, которые позволяли манипулировать генами, выделять и изменять их. Появление этих методов произошло в 1970-1980х годах. Это дало мощный толчок развитию этой области науки, которая и сегодня переживает период расцвета. Прежде всего, эти методы касаются получения индивидуальных генов и их введения в клетки других организмов (молекулярное клонирование и трансгенез, ПЦР), а также методов определения последовательности нуклеотидов в генах (секвенирования ДНК и РНК). Ниже эти методы будут рассмотрены более подробно. Мы начнем с простейшего базового метода - электрофореза и затем перейдем к более сложным методам.

ЭЛЕКТРОФОРЕЗ ДНК

Это базовый метод работы с ДНК, применяющийся вместе с практическими всеми другими методами для выделения нужных молекул и анализа результатов. Для разделения фрагментов ДНК по длине применяется метод электрофореза в геле. ДНК - кислота, ее молекулы содержат остатки фосфорной кислоты, которые отщепляют протон и приобретают отрицательный заряд (рис. 1).

Поэтому в электрическом поле молекулы ДНК движутся к аноду - положительно заряженному электроду. Это происходит в растворе электролитов, содержащем ионы-носители заряда, благодаря чему этот раствор проводит ток. Чтобы разделить фрагменты, применяется плотный гель из полимеров (агарозы либо полиакриламида). Молекулы ДНК "запутываются" в нем тем больше, чем они длиннее, и поэтому наиболее длинные молекулы движутся медленнее всего, а наиболее короткие - быстрее всего (рис. 2). Заблаговременно или после электрофореза гель обрабатывают красителями, связывающимися с ДНК и флуоресцирующими в ультрафиолетовом свете, и получают картину полос в геле (см. рис. 3). Для определения длин фрагментов ДНК образца их сравнивают с маркером - набором фрагментов стандартных длин, нанесенных параллельно на тот же гель (рис. 4).

Важнейшими инструментами для работы с ДНК являются ферменты, осуществляющие превращения ДНК в живых клетках: ДНК-полимеразы, ДНК-лигазы и рестрикционные эндонуклеазы, или рестриктазы. ДНК-полимеразы осуществляют матричный синтез ДНК, что позволяет размножать ДНК в пробирке. ДНК-лигазы сшивают между собой молекулы ДНК или залечивают бреши них. Рестрикционные эндонуклеазы , или рестриктазы , разрезают молекулы ДНК по строго определённым последовательностям, что позволяет вырезать отдельные фрагменты из общей массы ДНК. Эти фрагменты могут в каких-то случаях содержать отдельные гены.

рестриктазы

Последовательности, узнаваемые рестриктазами, симметричны, и разрывы могут происходить в середине такой последовательности или со сдвигом (в одном и том же месте в обеих нитях ДНК). Схема действия разных типов рестриктаз показана на рис. 1. В первом случае получаются так называемые «тупые» концы, а во втором – «липкие» концы. В случае «липких» концов дна цепь оказывается короче другой, образуется однонитевой участок с симметричной последовательностью, одинаковой на обоих образующихся концах.

Концевые последовательности будут одинаковыми при расщеплении любой ДНК данной рестриктазой и могут снова соединяться, так как имеют комплементарные последовательности. Их можно сшить с помощью ДНК-лигазы и получить единую молекулу. Таким образом удаётся объединить фрагменты двух разных ДНК и получить так называемые рекомбинантные ДНК . Этот подход используется в методе молекулярного клонирования, позволяющего получить индивидуальные гены и ввести их в клетки, которые могут образовывать закодированный в гене белок.

молекулярное клонирование

В молекулярном клонировании используется две молекулы ДНК - вставка, содержащая интересующий ген, и вектор - ДНК, выступающая в роли носителя. Вставку "вшивают" в вектор пр помощи ферментов, получая новую, рекомбинантную молекулу ДНК, затем эту молекулу внедряют в клетки-хозяева, и эти клетки образуют колонии на питательной среде. Колония - это потомство одной клетки, то есть клон, все клетки колонии генетически идентичны и содержат одну и ту же рекомбинантную ДНК. Отсюда термин "молекулярное клонирование", то есть получение клона клеток, содержащих интересующий нас фрагмент ДНК. После того, как колонии, содержащие интересующую нас вставку, получены, можно различными методами характеризовать эту вставку, например, определить ее точную последовательность. Также клетки могут производить кодируемый вставкой белок, если она содержит функциональный ген.

При внедрении рекомбинантной молекулы в клетки происходит генетическая трансформация этих клеток. Трансформация - процесс поглощения клеткой организма свободной молекулы ДНК из среды и встраивания её в геном, что приводит к появлению у такой клетки новых для неё наследуемых признаков, характерных для организма-донора ДНК. Например, если встраиваемая молекула содержит ген устойчивости к антибиотику ампициллину, то трансформированные бактерии будут расти в его присутствии. До трансформации ампициллин вызывал их гибель, то есть у трансформированных клеток возникает новый признак.

ВЕКТОРЫ

Вектор должен обладать рядом свойств:

    Во-первых, это относительно небольшая молекула ДНК, чтобы ей было легко манипулировать.

    Во-вторых, для того, чтобы ДНК сохранялась и размножалась в клетке, она должна содержать определённую последовательность, обеспечивающую её репликацию (точку начала репликации, или origin of replication).

    В-третьих, она должна содержать ген-маркер , который обеспечивает отбор только тех клеток, в которые попал вектор. Обычно это гены устойчивости к антибиотикам - тогда в присутствии антибиотика все не содержащие вектора клетки погибают.

Клонирование генов чаще всего проводят в клетках бактерий, так как они просты в культивировании и быстро размножаются. В клетке бактерии обычно присутствует одна большая кольцевая молекула ДНК, длиной в несколько миллионов пар нуклеотидов, содержащая все необходимые бактерии гены - бактериальная хромосома. Кроме неё в некоторых бактериях существуют небольшие (несколько тысяч пар нуклеотидов) кольцевые ДНК, называемые плазмидами (рис. 2). Они, также как и основная ДНК, содержат последовательность нуклеотидов, обеспечивающую способность ДНК реплицироваться (ori). Плазмиды реплицируются независимо от основной (хромосомной) ДНК, поэтому присутствуют в клетке в большом количестве копий. Многие из таких плазмид несут гены устойчивости к антибиотикам, что позволяет отличить клетки, несущие плазмиду, от обычных клеток. Чаще используются плазмиды, несущие два гена, обеспечивающие устойчивость к двум антибиотикам, например, к тетрациклину и апмицилину. Существуют простые методы выделения таких плазмидных ДНК, свободных от ДНК основной хромосомы бактерии.

ЗНАЧЕНИЕ ТРАНСГЕНЕЗА

Перенос генов из одного организма в другой называют трансгенезом , а такие модифицированные организмы - трансгенными . Методом переноса генов в клетки микроорганизмов получают рекомбинантные белковые препараты для нужд медицины, в частности, человеческие белки, не вызывающие иммунного отторжения - интерфероны, инсулин и другие белковые гормоны, клеточные факторы роста, а также белки для производства вакцин. В более сложных случаях, когда модификация белков проходит правильно только в клетках эукариот, применяют трансгенные клеточные культуры или трансгенных животных, в частности, скот (прежде всего коз), который выделяет необходимые белки в молоко, или же белки выделяют из их крови. Так получают антитела, факторы свертывания крови и другие белки. Методом трансгенеза получают культурные растения, устойчивые к гербицидам и вредителям и обладающие другими полезными свойствами. При помощью трансгенных микроорганизмов очищают сточные воды и борются с загрязнениями, существуют даже трансгенные микробы, которые могут расщеплять нефть. Помимо этого, трансгенные технологии незаменимы в научных исследованиях - развитие биологии сегодня немыслимо без рутинного применения методов модификации и переноса генов.

технология молекулярного клонирования

вставки

Для получения индивидуального гена из какого-либо организма из него выделяют всю хромосомную ДНК и расщепляют её одной или двумя рестриктазами. Ферменты подбирают так, чтобы они не разрезали интересующий нас ген, а делали разрывы по его краям, а в плазмидной ДНК делали 1 разрыв в одном из генов устойчивости, например, к ампицилину.

Процесс молекулярного клонирования включает следующие этапы:

    Разрезание и сшивание - конструирование из вставки и вектора единой рекомбинантной молекулы.

    Трансформация - внедрение рекомбинантной молекулы в клетки.

    Селекция - отбор клеток, получивших вектор со вставкой.

разрезание и сшивание

Плазмидную ДНК обрабатывают теми же рестриктазами, и она превращается в линейную молекулу, если подобрана такая рестриктаза, которая вносит в плазмиду 1 разрыв. В результате на концах всех образующихся фрагментов ДНК оказываются одни и те же липкие концы. При понижении температуры эти концы соединяются случайным образом, и их сшивают ДНК-лигазой (см. рис. 3).

Получают смесь кольцевых ДНК разного состава: некоторые из них будут содержать определённую последовательность ДНК хромосомной ДНК, соединённую с бактериальной ДНК, другие – соединённые вместе фрагменты хромосомной ДНК, а третьи – восстановленную кольцевую плазмиду или её димер (Рис. 4).

трансформация

Далее этой смесью проводят генетическую трансформацию бактерий, не содержащих плазмиды. Трансформация - процесс поглощения клеткой организма свободной молекулы ДНК из среды и встраивания её в геном, что приводит к появлению у такой клетки новых для неё наследуемых признаков, характерных для организма-донора ДНК. В каждую клетку может проникнуть и размножиться там только одна плазмида. Такие клетки помещают на твёрдую питательную среду, в которой содержится антибиотик тетрациклин. Клетки, в которые не попала плазмида, на этой среде расти не будут, а клетки, несущие плазмиду, образуют колонии, в каждой из которых находятся потомки только одной клетки, т.е. все клетки в колонии несут одну и ту же плазмиду (см. рис. 5).

Селекция

Далее стоит задача выделить только клетки, в которые попал вектор со вставкой, и отличить их от клеток, несущих только вектор без вставки или вовсе не несущих вектора. Этот процесс отбора нужных клеток называется селекцией . Для этого применяют селективные маркеры - обычно гены устойчивости к антибиотикам в составе вектора, и селективные среды , содержащие антибиотики или другие вещества, обеспечивающие селекцию.

В рассматриваемом нами примере клетки из колоний, выросших в присутствии ампицилина, пересевают на две среды: в первой есть ампицилин, а во второй – тетрациклин. Колонии, содержащие только плазмиду, вырастут на обеих средах, а колонии, в плазмидах которых находится встроенная хромосомная ДНК на среде с тетрациклином не вырастут (рис. 5). Среди них специальными методами отбирают те, которые содержат интересующий нас ген, выращивают в достаточных количествах и выделяют плазмидную ДНК. Из неё с помощью тех же рестриктаз, которые использовались при получении рекомбинантной ДНК, вырезают интересующий индивидуальный ген. ДНК этого гена может использоваться для определения последовательности нуклеотидов, введения в какой либо организм для получения новых свойств или синтеза нужного белка. Такой метод выделения генов называется молекулярным клонированием .

ФЛУОРЕСЦЕНТНЫЕ БЕЛКИ

В качестве генов-маркеров при исследованиях эукариотических организмов очень удобно использовать флуоресцентные белки. Ген первого флуоресцентного белка, зеленого флуоресцирующего белка (green fluorescent protein, GFP) был выделен из медузы Aqeuorea victoria и внедрен в различные модельные организмы (см. рис. 6) В 2008 году О. Симомура, М. Чалфи и Р. Тсьен получили Нобелевскую премию за открытие и применение этого белка.

Затем были выделены гены других флуоресцентных белков - красного, синего, желтого. Эти гены были модифицированы искусственно, чтобы получить белки с нужными свойствами. Разнообразие флуоресцентных белков показано на рис. 7, где изображена чашка Петри с бактериями, содержащими гены различных флуоресцентных белков.

применение флуоресцентных белков

Ген флуоресцентного белка можно сшивать с геном любого другого белка, тогда при трансляции будет образовываться единый белок - трансляционно слитый белок, или фьюжн (fusion protein), который флуоресцирует. Таким образом можно изучать, например, локализацию (расположение) любых интересующих белков в клетке, их перемещение. При помощи экспрессии флуоресцентных белков только в определенных типах клеток можно помечать клетки этих типов в многоклеточном организме (см. рис. 8 - мозг мыши, в котором отдельные нейроны имеют разные цвета за счет определенной комбинации генов флуоресцентных белков). Флуоресцентные белки - незаменимый инструмент современной молекулярной биологии.

ПЦР

Еще один метод получения генов называется полимеразной цепной реакцией (ПЦР) . В его основе лежит способность ДНК-полимераз достраивать вторую нить ДНК по комплементарной нити, как это происходит в клетках при репликации ДНК.

Точки начала репликации в этом методе задаются двумя небольшими фрагментами ДНК, называемыми затравками, или праймерами . Эти затравки комплементарны концам интересующего гена на двух цепях ДНК. Сначала хромосомную ДНК, из которой надо выделить ген, смешивают с затравками и нагревают до 99 о С. Это приводит к разрыву водородных связей и расхождению нитей ДНК. После этого температуру понижают до50-70 о С (в зависимости от длины и последовательности затравок). В этих условиях затравки присоединяются к комплементарным участкам хромосомной ДНК, образуя правильную двойную спираль (см. рис. 9). После этого добавляют смесь всех четырёх нуклеотидов, нужных для синтеза ДНК, и ДНК-полимеразу. Фермент удлиняет затравки, строя двуспиральную ДНК от места прикрепления затравок, т.е. от концов гена, до конца одноцепочечной хромосомной молекулы.

Если теперь снова нагреть смесь, то хромосомные и вновь синтезированные цепи разойдутся. После охлаждения к ним снова присоединятся затравки, которые берутся в большом избытке (см. рис. 10).

На вновь синтезированных цепях они присоединятся не к тому концу, с которого начинался первый синтез а к противоположному, так как цепи ДНК антипараллельны. Поэтому во втором цикле синтеза на таких цепях достроится только последовательность, соответствующая гену (см. рис. 11).

В данном методе применяется ДНК-полимераза из термофильных бактерий, способная выдерживать кипячение и работающая при температурах 70-80 о С, её не надо добавлять каждый раз, а достаточно внести в начале опыта. Повторяя процедуры нагрева и охлаждения в той же последовательности, мы можем в каждом цикле удваивать число последовательностей, ограниченных с двух концов внесёнными затравками (см. рис. 12).

После примерно 25 таких циклов число копий гена увеличится более чем в миллион раз. Такие количества легко можно отделить от внесённой в пробирку хромосомной ДНК и использовать для различных целей.

секвенирование ДНК

Ещё одним важным достижением является разработка методов определения последовательности нуклеотидов в ДНК - секвенирования ДНК (от англ. sequence - последовательность). Для этого необходимо получить чистые от других ДНК гены одним из описанных методов. Затем цепи ДНК разделяют нагреванием и прибавляют к ним затравку, меченую радиоактивным фосфором или флуоресцентной меткой. Обратите внимание, что берётся одна затравка, комплементарная одной цепи. Затем добавляется ДНК полимераза и смесь из 4-х нуклеотидов. Такая смесь делится на 4 части и к каждой добавляется один из нуклеотидов, модифицированный так, что у третьего атома дезоксирибозы он не содержит гидроксильной группы. Если такой нуклеотид включится в синтезируемую цепь ДНК, то её удлинение не сможет продолжаться, т.к. полимеразе некуда будет присоединять следующий нуклеотид. Поэтому синтез ДНК после включения такого нуклеотида обрывается. Таких нуклеотидов, называемых дидезоксинуклеотиды, добавляется значительно меньше, чем обычных, поэтому обрыв цепи происходит лишь изредка и в каждой цепи в разных местах. В результате получается смесь цепей разной длины, на конце каждой из них стоит один и тот же нуклеотид. Таким образом длина цепи соответствует номеру нуклеотида в изучаемой последовательности, например, если у нас был адениловый дидезоксинуклеотид, а полученные цепи имели длину 2, 7 и 12 нуклеотидов, значит в гене во второй, седьмой и двенадцатой позиции стоял аденин. Полученную смесь цепей легко разделить по размерам при помощи электрофореза, а синтезированные цепи выявить по радиоактивности на рентгеновской плёнке (см. рис. 10).

Получается картина, приведённая внизу рисунка, называемая радиоавтографом. Двигаясь по нему снизу вверх и читая буква над колонками каждой зоны мы получим последовательность нуклеотидов, приведённую на рисунке справа от автографа. Оказалось, что синтез останавливается не толоко дидезоксинуклеотидами, но и нуклеотидами, у которых в третьем положении сахара присоединяется какая-нибудь химическая группа, например флюоресцентный краситель. Если каждый нуклеотид пометить своим красителем, то зоны, получаемые при разделении синтезированных цепей, будут светиться разным светом. Это позволяет проводить реакцию в одной пробирке одновременно для всех нуклеотидов и разделяя полученные цепи по длине, идентифицировать нуклеотиды по цвету (см. рис. 11).

Такие методы позволили определить последовательности не только отдельных генов, но и прочитать целые геномы. В настоящее время разработаны ещё более быстрые методы определения последовательностей нуклеотидов в генах. Если парвый геном человека был расшифрован большим международным консорциумом с использованием первого приведённого метода за 12 лет, второй, с использованием второго, за три года, то сейчас это может быть сделано за месяц. Это позволяет предсказывать предрасположенность человека к многим заболеваниям и заранее принимать меры, чтобы избежать их.