Дом, дизайн, ремонт, декор. Двор и сад. Своими руками

Дом, дизайн, ремонт, декор. Двор и сад. Своими руками

Спиральный пар. Все о швп

1. Технические характеристики
Шариковые винты, например NBS, отличаются строгим контролем качества, осуществленным во время каждого производственного процесса.
Высокая производительность винтов позволяет снизить крутящий момент до 70 % по отношению к традиционным трапецеидальным винтам, как в применениях общего назначения (превращение вращательного движения в поступательное движение), так и в специальных применениях (превращение поступательного движения во вращательное движение).

1.1 Геометрия контакта
Готическая арка создает значительную прочность винту, одновременно обеспечивая точность и низкие значения крутящего момента.

2. Параметры выбора шариковых винтов (с циркуляцией шариков) NBS

    Выбор шарикового винта (с циркуляцией шариков) обусловлен следующими параметрами:
    -Класс точности
    -Шаг резьбы
    -Номинальный срок службы
    -Способ крепления
    -Критическая скорость вращения
    -Жесткость
    -Рабочая температура
    -Смазка

2.1 Класс точности
В наличии имеются шариковые винты (с циркуляцией шариков) NBS со следующими классами точности:

СО. С1 . С2 . С3 . С5 . С7 . С10

Каждый класс точности обусловлен следующими параметрами:

Е. е. езоо. е2∏

Приведенный ниже график предоставляет описание их значений.

Таблица - Терминология для обозначения класса точности
Термин Ссылка Определение
Компенсация длины хода Т Компенсация длины хода -разница между теоретической и номинальной длиной хода;
небольшое значение компенсации (если сопоставляется с номинальным ходом) часто
необходимо для компенсации удлинения вызванного увеличением температуры или внешними нагрузками.
Если в данной компенсации нет необходимости - теоретический ход равен номинальному.
Фактическая длина хода - Фактическая длина хода - это осевое смещение между винтом и гайкой.
Средняя длина хода - Средняя длина хода - это прямая линия, которая наибольше приближается к фактической длине хода;
средняя длина хода представляет собой наклон фактической длины хода.
Отклонение средней длины хода Е Отклонение средней длины хода - это разница между
средней и теоретической длиной хода.
Изменение хода
е
езоо
e2п
Изменениями хода называется полоса с двумя параллельными линиями средней длины хода.
Максимальный диапазон изменений на длине хода.
Диапазон изменений, замеренный на длине обычной части хода равной 300мм.
Ошибка биения, диапазон изменений при одном обороте (2 радиана).
Таблица - Значения ±Е и e [ед.изм. µм]
Класс точности С0 С1 С2 С3 С5 С7 С10
Длина
хода
[мм]
от: до: ±Е е ±Е е ±Е е ±Е е ±Е е е е
100 3 3 3.5 5 5 7 8 8 18 18 ±50/
300mm
±210/
300mm
100 200 3.5 3 4.5 5 7 7 10 8 20 18
200 315 4 3.5 6 5 8 7 12 8 23 18
315 400 5 3.5 7 5 9 7 13 10 25 20
400 500 6 4 8 5 10 7 15 10 27 20
500 630 6 4 9 6 11 8 16 12 30 23
630 800 7 5 10 7 13 9 18 13 35 25
800 1000 8 6 11 8 15 10 21 15 40 27
1000 1250 9 6 13 9 18 11 24 16 46 30
1250 1600 11 7 15 10 21 13 29 18 54 35
1600 2000 18 11 25 15 35 21 65 40
2000 2500 22 13 30 18 41 24 77 46
2500 3150 26 15 36 21 50 29 93 54
3150 4000 30 18 44 25 60 35 115 65
4000 5000 52 30 72 41 140 77
5000 6300 65 36 90 50 170 93
6300 8000 110 60 210 115
8000 10000 260 140
10000 12500 320 170
Таблица - Значения е зоо и e 2π [ед.изм. µм]
Класс точности С0 С1 С2 СЗ С5 С7 С10
е зоо 3.5 5 7 8 18 50 210
e 2π 2.5 4 5 6 8

2.2 Преднатяг и осевой зазор
Преднатяг и осевой зазор шариковых винтов NBS указаны в приведенной ниже таблице.

Таблица - Сочетание преднатяга и осевого зазора
Класс преднатяга Р0 Р1 Р2 РЗ РА
Осевой зазор Да Нет Нет Нет Нет
Преднатяг Нет Нет Легкий Средний Сильный

В приведенных ниже таблицах перечисляются основные указания при выборе класса точности, преднатяга и осевого зазора шариковых винтов (с циркуляцией шариков) NBS.

Таблица - Класс точности, преднатяг и осевой зазор
Класс точности Преднатяг и осевой зазор Тип гайки Тип ходового винта
С 10 РО (с осевым зазором) Одинарная Накатанный
С 7 Р1 или РО По требованию Накатанный или выпрямленный
С 5 По требованию;
стандартный 0TNBS-P2
По требованию
ошибки шага
С 3 По требованию;
стандартный 0TNBS-P2
По требованию Выпрямленный, с сертификатом контроля
ошибки шага
Таблица - Сила преднатяга для класса P2
Модель Одинарная гайка Двойная гайка
1605 1 ± 3 N 3 ± 6 N
2005 1 ± 3 N 3 ± 6N
2505 2 ± 5 N 3 ± 6N
3205 2 ± 5 N 5 ± 8N
4005 2 ± 5 N 5 ± 8N
2510 2 ± 5 N 5 ± 8N
3210 3 ± 6 N 5 ± 8N
4010 3 ± 6 N 5 ± 8N
5010 3 ± 6 N 8 ± 12 N
6310 6 ± 10 N 8 ± 12 N
8010 6 ± 10 N 8 ± 12 N

2.3 Шаг резьбы
Выбор шага винта зависит от следующей формулы:

где:
Ph = шаг винта [мм]
Vmax = максимальная скорость перемещения системы [м/мин]
n mах = максимальный режим вращения винта [мин 1]

В том случае, если результатом уравнения не является целый результат, следует выбрать округленную в большую сторону величину, выбирая между имеющимися в наличии шагами.

Учитывая возможную переменность осевых нагрузок, вызванную, например, наличием сил инерции, следует рассчитать значение нагрузки обозначенное, как “средняя динамическая нагрузка Pm”, определяющая одинаковые коэффициенты переменных нагрузок.

2.4.1 Средняя динамическая нагрузка
Для расчета шарикового винта подверженного переменным условиям работы, используются средние значения Рm и n m:

Р m = средняя динамическая осевая нагрузка[N]
n m = средняя скорость [мин -1 ]

При условиях непрерывной нагрузки и переменной скорости можно достигнуть следующих значений:

При условиях переменной нагрузки и непрерывной скорости можно достигнуть следующих значений:

При условиях переменной нагрузки и переменной скорости можно достигнуть следующих значений:

Выбор винта в зависимости от воздействующих и (или) востребованных сил тяги обусловлен следующими величинами:

  • Статическая нагрузочная способность Соа
  • Динамическая нагрузочная способность Са

Нагрузочная статическая способность Соа (или коэффициент нагрузочной способности) определяется в качестве нагрузки постоянной интенсивности, действующей на ось винта, который, в точке максимального воздействия между соприкасающимися частями, устанавливает остаточную деформацию, равную 1/10000 диаметра тела качения.

Значения Соа приведены в размерных таблицах.

2.5.1 Коэффициент статического запаса прочности a s Коэффициент статического запаса прочности a s (или фактор статического запаса прочности) определяется следующим уравнением:

2.5.2 Коэффициент твердости f H
Коэффициент твердости учитывает поверхностную твердость дорожек качения:

где:
твердость дорожек HsV10 = фактическая твердость дорожек качения, выраженная в единицах по Виккерсу с испытательной нагрузкой равной 98.07 N

700HV10 = твердость, равная 700 единицам по Виккерсу при испытательной нагрузке равной 98.07 (700HV10 ≈ 60 HRC)

2.5.3 Коэффициент точности f ac
Коэффициент точности учитывает допуски обработки винта, а значит и класс точности, соответствующий стандарту.
В таблице приведены некоторые примеры.

Необходимость в коэффициенте статического запаса прочности a s > 1 свызвана возможным наличием ударов и (или) вибраций, пусковых и остановочных моментов, случайных нагрузок, которые могут привести к неисправности системы.
В приведенной ниже таблице указаны значения коэффициента статического запаса прочности с учетом типа применения.


Нагрузочной динамической способностью Са (или коэффициентом динамической нагрузки) является постоянная интенсивная динамическая нагрузка, действующая на ось винта, определяющая срок службы 10 6 оборотов.

Значения С а приведены в размерных таблицах.

2.7 Номинальный ресурс L

Номинальный ресурс L (это теоретический пробег,выполненный, по крайней мере, 90% показательного количества одинаковых шариковых винтов (с циркуляцией шариков), подверженных одинаковым условиям нагрузкам, не проявляя признаков усталости материала) определяется следующими условиями:

  • Гайка без преднатяга
  • Гайка с преднатягом

2.7.1 Гайка без преднатяга
Для шариковых винтов (с циркуляцией шариков) с гайкой без преднатяга, расчет номинального ресурса, выраженный в числе оборотов, определяется следующей формулой:

где:


P m = средняя задействованная динамическая осевая нагрузка [N]

  • Класс точности винта от 1 до 5
  • Надежность до 90 %

где:
a 1 = коэффициент надежности

2.7.2 Коэффициент a 1
Коэффициент а 1 учитывает возможность непрогиба C%.

Таблица - Коэффициент возможности непрогиба а 1
C% 80 85 90 92 95 96 97 98 99
a 1 1.96 1.48 1.00 0.81 0.62 0.53 0.44 0.33 0.21

Следует заметить, что для С% = 90 a 1 = 1.00

2.7.3 Гайка с преднатягом
Действительность последующих формул обусловлена поддержанием постоянного преднатяга; в ином случае следует учитывать случай с гайкой без преднатяга.
Для шариковых винтов (с циркуляцией шариков) с гайкой с преднатягом, расчет номинального ресурса, выраженный в числе оборотов, определяется следующей формулой:

где:
L 10 = номинальный ресурс [обороты]
L 10 b - (С а /Pm 2) х 10 6

L 10a и L1 0b номинальные ресурсы для двух половинок гайки.

    Данное уравнение действительно в следующих случаях:
  • Твердость дорожек качения = 60HRC
  • Класс точности винта от 1 до 5;
  • Надежность до 90 %.

В том случае, если условия эксплуатации не соответствуют приведенным выше условиям, следует использовать следующую формулу:

где:
L 10 = номинальный ресурс [обороты]
L 10 a = (C a /P m1) 3 X 10 6
L 10 b - (С а /Pm 2) х 10 6

a 1 = коэффициент надежности;
f ho = коэффициент твердости (см. коэффициент статического запаса прочности a s)
f ac = коэффициент точности (см. коэффициент статического запаса прочности a s)

P m1 и P m2 - средние осевые динамические нагрузки для двух половинок гайки;

Р r = сила преднатяга [N]

2.7.4 Номинальный срок службы в часах Lh

Имея L 10 (номинальныйресурс, выраженный в числе оборотов) можно рассчитать номинальный ресурс в часах работы L h ;

где:
L m = продолжительность работы [часы]
n m = средняя скорость вращения [мин -1 ]

m i = скорость [МИН -1 ]
qi = процентное распределение [%]

2.7.5 Номинальный срок службы в км Lkm

Имея L 10 (номинальный ресурс, выраженный в числе оборотов) можно рассчитать номинальный ресурс пройденного расстояния в км L km .

где:
L km =номинальный ресурс [км]
P h = шаг винта [мм]

В нижеследующей таблице приведены указания типического рабочего ресурса шарикового винта для применений общего назначения.

2.8 Способ крепления
Как правило, существуют следующие типы крепления шарикового винта:

Применяемый способ крепления - это функция условий применения, обеспечивающая жесткость и требуемую точность.

2.9 Критическая скорость вращения

Максимальная скорость вращения шарикового винта не должна превышать 80% критической скорости.
Критическая скорость вращения представляет собой точку, в которой винт начинает вибрировать, вырабатывая резонансный эффект, вызванный совпадением частоты вибрации с естественной частотой винта.

Значение критической скорости зависит от внутреннего диаметра ходового винта, способа крепления краев и длины свободной величины прогиба.
Критическая скорость измеряется следующей формулой:

где:
n cr = критическая скорость [мин -1 ]
f kn = коэффициент способа крепления
d 2 = внутренний диаметр ходового винта [мм]
l n = длина свободной величины прогиба [мм]

В зависимости от типа крепления, поставляются значения f kn:

где:
do = номинальный диаметр [м м]
da = диаметр шариков [мм]
а = угол контакта (= 45)

Длина свободной величины прогиба l n определяется в зависимости от:

-Гайки без преднатяга

l n = расстояние между креплениями [мм] (в случае крепления “неразъемное - свободное", следует учитывать расстояние между свободным краем винта и гнездом)

-Гайка с преднатягома

l n = максимальное расстояние между половиной гайки и креплением [мм] (в случае крепления “неразъемное - свободное", следует учитывать максимальное расстояние между половиной гайки и свободным краем винта)

n mах = максимальная скорость вращения винта [обороты/мин]

Критическая нагрузка - это максимальная осевая нагрузка, которой может подвергаться винт, не нарушая стабильности системы; в том случае, если действующая на винт максимальная осевая нагрузка достигнет или превысит значение критической нагрузки, создается новая форма воздействия на винт, которое называется “пиковая нагрузка”, вызывающая дополнительный прогиб помимо простого сжатия.

Данное явление, связанное с эластичными свойствами компонента, становиться более чувствительным тогда, когда большая длина свободной величины прогиба винта будет иметь достойные внимание значения по отношению к ее разрезу. Значение критической нагрузки определяется следующей формулой:

где:
P cr = Критическая нагрузка [N]
f kp = коэффициент способа крепления
d 2 = внутренний диаметр ходового винта [мм] (см. критическую скорость)
l cr = длина свободной величины прогиба [мм]

В зависимости от типа крепления, поставляются значения fkp:

Неразъемный - Неразъемный f kр = 40.6
Неразъемный - Опорный f kp = 20.4
Опорный - Опорный f kp = 10.2
Неразъемный - Свободный f kp = 2.6

Для расчета критической нагрузки, значение la определяется максимальным расстоянием между половиной гайки и креплением.

Для большей безопасности, следует рассматривать максимально допустимую осевую нагрузку, как равную половине критической нагрузки:

P max = максимально допустимая осевая нагрузка [N]

2.11 Жесткость

Осевая жесткость системы перемещения оснащенной шариковым винтом определяется следующей формулой:

где:
К = осевая жесткость системы
Р = осевая нагрузка [N]
е = осевая деформация системы [µm]

Осевая жесткость системы К - это функция осевой жесткости отдельно взятых компонентов, которые ее составляют: ходовой винт, гайка, опоры, соединительные опорные элементы и гайка.

где:
K s = осевая жесткость ходового винта
K N = осевая жесткость гайки
К в = осевая жесткость опор
К н = осевая жесткость соединительный опорных элементов и гайки

2.11.1 Ks- Осевая жесткость ходового винта

Значение жесткости Ks - это функция системы крепления.

Способ крепления: Неразъемный - Неразъемный

где:
d 2 = внутренний диаметр (см. критическую скорость вращения)
l s = расстояние между средней осью двух креплений

Способ крепления: Неразъемный - Опорный

где:
d 2 = внутренний диаметр [мм] (см. критическую скорость)
l s = максимальное расстояние между средними осями крепления и гайкой [мм].

2.11.2 K N - Осевая жесткость гайки

Двойная гайка с преднатягом

где:
K = табличная жесткость
F pr = сила преднатяга [N]

Простая гайка без преднатяга

Значение K N определяется следующей формулой:

где:
P = осевая нагрузка [N]
C a = нагрузочная динамическая способность [N]

2.11.3 Кв - Осевая жесткость опор

Осевая жесткость опор винта обусловлена жесткостью подшипников.
В случае жестких радиальных шариковых подшипников с угловым контактом применяются следующие формулы:

где:
бв = осевая деформация подшипника
Q = нагрузка на каждый шарик [N]
β = угол контакта (45°)
d = диаметр шариков [мм]
N = число шариков

Жесткость соединительных опорных элементов и гаек является характеристикой станка, а значит, не зависит от системы винта, гайки, опор.

2.12 Рабочая температура

В случае крепления типа “неразъемный-неразъемный", следует учитывать возможное тепловое расширение, вызванное повышением температуры винта во время работы; такое расширение, если предусмотрено соответствующим образом, оказывает на систему действие дополнительной осевой нагрузки, которое может привести к неисправности работы системы. Для решения проблемы необходимо выполнить достаточный преднатяг винта.

где:
AL = изменения длины [мм] а = коэффициент теплового расширения
(11.7 х 10 -6 [°С -1 ])
L = длина винта [мм]
АТ = изменения температуры[°С]

2.13 Смазка

Для смазки шариковых винтов NBS нужно учитывать следующие указания.

2.13.1Смазывание жидким смазочным материалом

Следует предпочитать данный тип смазывания в случае эксплуатации на высоких скоростях вращений. Смазочные жидкие вещества, которые можно применить, наделены теми же характеристиками, как и вещества применяемые для смазки подшипников качения (от VG 68 до VG 460). Выбор вязкости - это функция рабочих характеристик и рабочей среды: температура, скорость вращения, действующие нагрузки; только для винтов с низким режимом вращения рекомендуется применять высокие классы вязкости (около VG 400).
В данном случае не нужно обращать особого внимания на техобслуживание за исключением постоянного обеспечения в системе смазочного масла (промежутки для осуществления повторной смазки являются более короткими, чем в установках, использующих консистентную смазку).
В любом случае следует соблюдать инструкции производителя жидкого масла.

2.13.2 Консистентная смазка

Смазывание консистентной смазкой предназначено для невысоких скоростей вращения.
При выборе консистентной смазки следует учитывать предписания, применяемые для смазывания подшипников качения; поэтому рекомендуется использование консистентной смазкой на основе литийного мыла, а не смазок с твердыми добавками (как, напр., MoS2 или графитные смазки), за исключением очень низких режимов вращения; однако рекомендуется придерживаться инструкций производителя консистентной смазки.

3. Момент и номинальная мощность

Для приблизительного расчета значений момента и мощности двигателя для преобразования вращательного движения в прямолинейное движение, нужно использовать данные формулы:

где:

Рmax = максимальная действующая нагрузка [Н]
Ph = шаг резьбы [мм]
ɳ v = механический кпд винта (ок. 0.9)
ɳ t = механический кпд трансмиссии двигателя - винта
(трансмиссия с зубчатыми колесами ɳ t = 0.95+0.98);
z = передаточное число двигатель - винт

В случае прямого соединения двигателя - винта, z=1 и ɳ 2 =1.

где:
Nm = номинальная мощность двигателя [кВт]
Mm = номинальный крутящий момент [Нм]
Пmах = максимальный режим вращения винта [мин]
z = передаточное число двигатель - винт(Птах X Z = П motor)

В случае преобразования прямолинейного движения во вращательное движение, имеется:

М r = момент нагрузки [Нм]
Р max = максимальная действующая нагрузка [Н]
P h = шаг резьбы [мм]
ɳ r = механический кпд (ок. 0.8

4. Примеры монтажа

Таблица - Обозначение для заказа
Код типа гайки Направление
винта
Номинальный
диаметр
винта [мм]
Шаг [мм] Тип фланца Код обработки Класс
точности
Общая
длина
винта [мм]
Код
преднатяга
Одинарная или
двойная
Фланцевая или
не фланцевая
Тип
V = одинарная
W =двойная
F = фланцевая

C = фланцевая

U
I
Е
К
М
R = правое
L = левое
_ - N =без среза
S = одинарный срез
D = двойной срез
С = Выпрямленный
F = Накатанный
С 0
С 1
С 2
С 3
С 5
С 7
С 10
- Р0
Р1
Р2
РЗ
Р4

6. Программа расчета NBS для шариковых винтов (с циркуляцией шариков)

В нашем интернет-магазине Вы можете приобрести самостоятельно

Или, обратившись к нашим специалистам по бесплатному номеру телефона 8 800 700 72 07

А также, отправив заявку на адрес электронной почты sale@сайт

Героторные пары

В этой статье хочется рассказать о принципе работы винтовых (или героторных) насосов. Насосы этого типа широко распространены в промышленности, а описание их работы встречается далеко не везде.
При одинаковом внешнем виде, эти насосы могут иметь совершенно разные рабочие параметры.
Попробуем разобраться, в чем отличие.

На рисунке представлен типовой винтовой насос в разрезе:

Где: 1. Подшипниковый узел, 2. Уплотнение вала, 3. Шарниры, 4. Тягя, 5. Винт (ротор), 6. Обойма (статор).

Героторной парой (рабочим органом винтового насоса), называют пару ротор-статор (или винт-обойма). При вращении ротора в статоре жидкость движется по спиралеобразному каналу статора. Таким образом, происходит перекачка жидкости.

Статор – это внутренняя n+1-заходная спираль, изготовленная, как правило, из эластомера (резины), нераздельно (либо раздельно) соединенного с металлической обоймой (гильзой).
Ротор – это внешняя n-заходная спираль, которая изготавливается, как правило, из стали с последующим покрытием или без него.
Стоит указать, что наиболее распространены в настоящее время агрегаты с 2-заходными статором и 1-заходным ротором, такая схема является классической практически для всех производителей винтового оборудования.

Важным моментом, является то, что центры вращения спиралей, как статора, так и ротора смещены на величину эксцентриситета, что и позволяет создать пару трения, в которой при вращении ротора внутри статора создаются замкнутые герметичные полости вдоль всей оси вращения. При этом количество таких замкнутых полостей на единицу длины винтовой пары определяет конечное давление агрегата, а объем каждой полости – его производительность.

Отличием насосов друг от друга как раз и является применение разных по геометрии героторных пар.
Существуют четыре основных типов героторных пар, которые принято обозначать буквами латинского алфаита: S, L, D, P.
В нашей стране и странах ближнего зарубежья, пока выпускают насосы только с парами S и L. Более сложные в изотовлении пары D и P делают только за границей, например в Германии.

Типы героторных пар:

1. Геометрия "S":
Витков: 1/2
Производительность:100%
Диффер. давление: 12 бар

Преимущества геометрии S:
очень плавная подача
компактные габариты несмотря на большое число ступеней
большая площадь сечения входа
низкая скорость потока/высокая всасывающая способность
возможна перекачка спрессованных частиц
перекачка больших частиц

Следует отметить, что обойма с геометрией "S" являтся "запирающей", т.е. через неё при остановленном насосе жидкость протекать не будет.


2. Геометрия "L":
Витков: 1/2
Производительность:200%
Диффер. давление: 6 бар

Преимущества геометрии L:
хорошие объёмные характеристики при длительном межремонтном периоде благодаря длинной линии контакта между ротором и статором
компактные габариты при высокой производительности
меньшая скорость трения

Обойма этого типа является "незапирающей". При остановленном насосе жидкость может протекать через героторную пару.

3. Геометрия "D":
Витков: 2/3
Производительность:150%
Диффер. давление: 12 бар

Преимущества геометрии D:
очень малые габариты при высоком давлении и производительности
почти безпульсационная перекачка
высокая точность дозации


4. Геометрия "P":
Витков: 2/3
Производительность:300%
Диффер. давление: 6 бар

Преимущества геометрии P:
компактные размеры при очень высокой производительности
почти отсутствует пульсация
высокая точность дозации
хорошие объёмные показатели, длительный межремонтный период благодаря длинной контактной линии между ротором и статором

Мы привели примеры геометрии героторных пар одинаковой длины. Из рисунков видно, что количество витков у пар "S" в два раза выше чем у пары "L" при одиноковой длине. Это сказывается на максимальном давлении героторной пары. Чем болье витков, тем выше максимальное давление.

Как можно заметить, каждая героторная пара выдает определенное максимальное давление (если рассматривать пары одной длины).
Возникает вопрос: что делать, если давление на выходе нужно большее (или меньшее), чем выдает та или иная пара.
В этом случае, увеличивают (уменьшают) длину героторной пары. Так, например, увеличение длины пары "S" в два раза, приводит к увеличению маквимального давления насоса в 2 раза, т.е. давление возрастет до 12 атмосфер.

Винтовые насосы также могут изготавливаться в различных исполнениях для работы в тех или иных условиях.

Варианты компоновки насосов:

1. Классическая горизонтальная компоновка с подшипниковой стойкой

2. Горизонтальная компоновка без подшипниковой стойки

3. Дополнительный подпорный шнек

4. Бункер и шнековый питатель

5. Дополнительный мецератор (измельчитель)

Видео работы бочкового винтового насоса

Винтовая пара представляет собой две детали (винт и гайку), соединенные по винтовой поверхности. Винтовую пару используют для преобразования вращательного движения в поступательное, или наоборот.

Винтовые пары бывают с треугольным, прямоугольным и круглым профилем винтовой поверхности.

В технике винтовую поверхность часто называют резьбой. Резьбы с треугольным профилем подразделяют на метрические, дюймовые, трапецеидальные и упорные.

Основные геометрические параметры метрической резьбы по ГОСТ 9150–81 (рис. 5.3):

Н – высота исходного профиля (равносторонний треугольник);

d , d 2 , d 1 – диаметры наружный, средний и внутренний;

Рис. 5.5. Винтовые пары с прямоугольной и треугольной резьбой:

в – винт, г – гайка, Р и d 2 – шаг и средний диаметр резьбы

шаг Р – расстояние между ближайшими сходственными точками контура по линии, параллельной оси резьбы;

угол профиля  = 60;

угол подъема винтовой линии резьбы  (рис. 5.4).

П

Рис. 5.6. Винтовая пара:

v t и v a – окружная и осе­ваяскорости гайки;d г – наружный диаметр гайки;– угол подъема винтовой линии

ередаточное отношениеi винтовой пары равно отношению окружной v t и осевой v a скоростей гайки (винта) (рис. 5.6).

или

Здесь t – период вращательного движения.

Период вращательного движения гайки


где  и n – угловая скорость и частота вращения гайки.

Скорость поступательного перемещения гайки

Трение в винтовой паре

Рассмотрим винтовую пару с прямоугольным профилем резьбы (рис. 5.7). Полагаем, что осевая нагрузка F а на винт сосредоточена на одном витке и что реакция гайки приложена по средней линии резьбы, т. е. по d 2 .

Рис. 5.7. К определению сил трения в винто­вой паре с прямоугольным профилем резьбы

Перемещение гайки по винту можно рассматривать как движение ползуна по наклонной плоскости с углом наклона  (рис. 5.8).

При равномерном движение ползуна справедливым является следующее уравнение равновесия:

где F t = М /r 2 – горизонтальная сила, действующая на ползун (гайку), М – крутящий момент пары сил, приложенных к гайке на расстоянии r 2 от оси винта в плоскости, пер­пендикулярной оси (в горизонтальной плоскости).

Из плана сил (рис. 5.9) видно, что движущая сила F t , необходимая для равномерного движения ползуна вверх по наклонной плоскости, связана с величиной осевой силы F а соотношением

F t = F а tg ( + ),

а крутящий момент М пары, приложенный к гайке, будет

М = F t r 2 = F а tg ( + ) r 2 .

Из закона Кулона–Амонтона следует

F т = f N = N tg .

Из плана сил определим силу трения, действующую в винтовой паре:

Разделив числитель и знаменатель этого выражения на cos  и учитывая, что f = tg , получим

В винтовой паре с треугольной резьбой нормальная сила N > F а (рис. 5.10), поэтому сила трения F т больше, чем в рассмотренной выше винтовой паре с прямоугольным профилем резьбы. Соответственно

Рис. 5.10 . Соотношения между нормаль­нойи осевой силами в винтовых парах с треугольным и прямоугольным профилями резьбы

угол трения  и коэффициент трения f у винтовой пары с треугольной резьбой будут больше, чем в винтовой паре с прямоугольным профилем резьбы.

В винтовой паре с треугольной резьбой коэффи­циент и угол трения будут

и
.

Полученные для винтовой пары с треугольным профилем резьбы коэффи­циент f и угол  трения называются приведенными коэффи­циентом и углом трения.

Для создания станков с программным числовым управлением необходимо использовать шарико-винтовые пары. Они отличаются не только внешним видом, но и конструкцией. Для выбора определенной модели следует заранее ознакомиться со строением и комплектующими ШВП.

Назначение шарико-винтовых пар

Все виды ШВП для станков с ЧПУ предназначены для преобразования вращательного движения в поступательное. Конструктивно состоят из корпуса и ходового винта. Отличаются друг от друга размерами и техническими характеристиками.

Основным требованием является минимизация трения во время работы. Для этого поверхность комплектующих проходит процесс тщательной шлифовки. В результате этого во время движения ходового винта не происходит резких скачков его положения относительно корпуса с подшипниками.

Дополнительно для достижения плавного хода применяется не трение скольжение относительно штифта и корпуса, а качение. Для получения этого эффекта применяется принцип шариковых подшипников. Подобная схема увеличивает перегрузочные характеристики ШВП для станков с ЧПУ, значительно повышает КПД.

Основные компоненты шарико-винтовой передачи:

  • ходовой винт. Предназначен для преобразования вращательного движения в поступательное. На его поверхности формируется резьба, основная характеристика — ее шаг;
  • корпус. Во время движения ходового винта происходит смещение. На корпус могут устанавливаться различные компоненты станка: фрезы, сверла и т.д.;
  • шарики и вкладыши. Необходимы для плавного хода корпуса относительно оси ходового винта.

Несмотря на все преимущества подобной конструкции шарико-винтовые передачи для ЧПУ применяются только для средних и малых станков. Это связано с возможностью прогиба винта при расположении корпуса в его средней части. В настоящее время максимально допустимая длина составляет 1,5 м.

Аналогичными свойствами обладает передача винт-гайка. Однако это схема характеризуется быстрым износом комплектующих из-за их постоянного трения между собой.

Области применения ШВП

Относительная простота конструкции и возможность изготовления шарико-винтовой передачи с различными характеристиками расширяет область его применения. В стоящее время шарико-винтовые пары являются неотъемлемыми компонентами самодельных фрезерных станков с числовым программным управлением. Ну на этом область применения не ограничивается.

Благодаря своей универсальности ШВП могут устанавливаться не только в станках с ЧПУ. Плавный ход и практические нулевое трение делают их незаменимыми компонентами в точных измерительных приборах, установок медицинского назначения, в машиностроении. Нередко для комплектации самодельного оборудования берут запчасти от этих приборов.

Это стало возможным благодаря следующим свойствам:

  • минимизация потерь на трение;
  • высокий коэффициент нагрузочной способности при небольших габаритах конструкции;
  • низкая инертность. Движение корпуса происходит одновременно с вращением винта;
  • отсутствие шума и плавный ход.

Однако следует учитывать и недостатки ШВП для оборудования ЧПУ. Прежде всего к ним относятся сложная конструкция корпуса. Даже при незначительном повреждении одного из компонентов шарико-винтовая передача не сможет выполнять свои функции. Также накладываются ограничения на скорость вращения винта. Превышение этого параметра может привести к появлению вибрации.

Для уменьшения осевого зазора сборка выполняется с натягом. Для этого могут устанавливаться шарики увеличенного диаметра или две гайки с осевым смещением.

Характеристики ШВП для оборудования с ЧПУ

Для выбора оптимальной модели шарико-винтовой передачи для станков с числовым программным управлением следует ознакомиться с техническими характеристиками. В дальнейшем они повлияют на эксплуатационные качества оборудования и время его безремонтной эксплуатации.

Основным параметром ШВП для станков с ЧПУ является класс точности. Он определяет степень погрешности положения подвижной системы согласно расчетным характеристикам. Класс точности может быть от С0 до С10. Погрешность перемещения должна даваться производителем, указывается в техническом паспорте изделия.

Класс точности С0 С1 С2 С3 С5 С7 С10
Погрешность на 300 мкм 3,5 5 7 8 18 50 120
Погрешность на один оборот винта 2,5 4 5 6 8

Кроме этого при выборе нужно учитывать следующие параметры:

  • отношение максимальной и необходимой скорости мотора;
  • общая длина резьбы ходового винта;
  • средние показатели нагрузки на всю конструкцию;
  • значение осевой нагрузки — преднатяг;
  • геометрические размеры — диаметр винта и гайки;
  • параметры электродвигателя — крутящий момент, мощность и другие характеристики.

Эти данные должны быть предварительно рассчитаны. Следует помнить, что фактические характеристики ШВП для оборудования с ЧПУ не могут отличаться от расчетных. В противном случае это приведет к неправильной работе станка.

Количество оборотов шариков за один круг определит степень передачи крутящего момента от вала корпусу. Этот параметр зависит от диаметра шариков, их количества и сечения вала.

Установка ШВП на станок с ЧПУ

После выбора оптимальной модели необходимо продумать схему установки ШВП на станок с ЧПУ. Для этого предварительно составляется чертеж конструкции, закупаются или изготавливаются другие компоненты.

Во время выполнения работы следует учитывать не только технические характеристики шарико-винтовой передачи. Основное ее предназначение — движение элементов станка по определенной оси. Поэтому следует заранее продумать крепление блока обработки к корпусу ШВП для станков с ЧПУ. Необходимо сверить размеры посадочных отверстий, их расположение на корпусе. Следует помнить, что любая механическая обработка шарико-винтовой передачи может повлечь за собой негативные изменения ее характеристик.

Порядок установки в корпус станка с ЧПУ.

  1. Определение оптимальных технических характеристик.
  2. Измерение длины вала.
  3. Создание схемы сопряжения монтажной части вала с ротором двигателя.
  4. Установка передачи на корпус станка.
  5. Проверка работоспособность узла.
  6. Подключение всех основных компонентов.

После этого можно выполнить первый пробный запуск оборудования. В процессе работы не должно возникать колебания и вибрации. В случае их появления выполнять дополнительную калибровку компонентов.

При поломке ШВП во время эксплуатации станка с ЧПУ ремонт передача можно сделать самостоятельно. Для этого можно заказать специальный комплект. С особенностями проведения восстановительных работ можно знакомиться в видеоматериале:

Большинство производителей компрессоров заявляют гарантию на работу без капитального ремонта компрессора до 40000 часов. При идеальных условиях, которых не бывает при реальной эксплуатации.

Время жизни современных опорных подшипников винтовой пары еще не достигло уровня, когда в течении этого времени не требуется вмешательства и их замены. В среднем и по честному, подшипники работают от 10000 до 20000 часов, в зависимости от качества подшипников установленных в винтовой блок на заводе и регулярности технического обслуживания у владельца компрессора. После наработки этого времени, появляется шум под нагрузкой в винтовой паре, нарастающий по мере увеличения износа еще 5000-15000 тысяч часов. В итоге, компрессор начинает перегреваться и винтовой блок клинит из-за изменившихся зазоров в винтовой паре. В случае серьезного перегрева торцы винтовой пары "привариваются" к корпусу, что резко увеличивает трудозатраты на ремонт винтового блока. Или подшипники разваливаются, оставляя за собой непредсказуемые повреждения - от локального перегрева винтовой пары, до задиров и колотых хвостовиков винтов.

В любом из этих случаев, выполним следующие работы:

Замена опорных подшипников винтовой пары.
- замена сальников винтовых валов.
- настройка рабочих зазоров винтового блока.
- восстановление рабочих торцов винтов.
- восстановление профиля винтов.
- восстановление хвостовика ведущего винтового вала.
- восстановление корпуса винтового блока.

Работы проводятся одинаково успешно, независимо от производителя винтового блока, будь то: Ceccato, Aerzener, GHH-Rand, Rotorcomp, Fini, Enduro, Tamrotor, Termomeccanica, VMC, отечественный Арсенал или любой другой производитель.

Пример проведения работ, нажмите на заголовок, чтобы просмотреть:

Ремонт винтового блока 250 кВт

Сдвоенный винтовой блок с прямой передачей через редуктор. Агрегат исправно работал в течении 5 лет, после чего после чего по нарастающей, появились шумы и вибрации при работе винтового блока. Вес 1100кг и размеры агрегата внушают уважение любому, кто стоит рядом с этим произведением инженерной мысли.

После согласования объёма работ с заказчиком, провели дефектацию винтового блока с полной разборкой:

Вскрытие показало полный износ опорных подшипников обоих винтовых пар, одной части чуть больше, второй чуть меньше, и небольшие локальные задиры на одном из винтовых блоков. По всей видимости, неудержимая мощь этого агрегата засосала и съела какой-то весьма твердый мусор:

Износ подшипников приближался к критическому, что в дополнение к мусору, также отразилось на торцах винтовых роторов:

В картере и закрытых полостях присутствовала металлическая стружка, что говорило о предельном износе подшипников и грядущем перегреве и заклинивании. Если бы не аккуратность и внимательность обслуживающего персонала компрессора, то еще немного и объемы ремонта возрасли бы в разы:

После результатам дефектации заказали новые подшипники для винтовых пар, произвели их замену, а также замену подшипников редуктора. Собрали всю металлическую стружку, промыли картер, убрали все задиры на роторах и крышках. Аккуратно собрали и максимально точно и тщательно настроили оба винтовых блока, чтобы избежать перекосов по нагрузке при работе.

Теперь ближайшие 4-5 лет Заказчику не о чем беспокоится, кроме своевременной замены масла и фильтров на данном агрегате.

Ремонт винтового блока 75 кВт

Винтовой блок с зубчатой передачей. Беда подкралась со стороны электродвигателя Siemens, который разбил подшипники свои и соответственно шестеренчатого редуктора, что привело к заклиниванию. Шпонки на зубчатых шестернях не срезало и случилось то, что должно было случится - расколота малая шестерня и хвостовик ведущего ротора.
Анализ материала винтовой пары показал, что это обычный чугун. Эффективный с точки зрения трения, но плохо поддающийся ремонту. Это также объясняет, почему не срезана стальная шпонка и делает ремонт только интереснее.

Убитая шестерня:

Повреждения хвостовика ведущего вала:

Учитывая факт, что стоимость нового винтового блока в 4-5 раз дороже ремонта, решение клиентом было принято незамедлительно.

Восстановили хвостовик и шпоночный паз. Еще раз обращаем внимание, что материал винтов - чугун:

Заказали и установили новую шестерню:

Само собой, поменяли опорные подшипники, попутно улучшив конструкцию - вместо одного упорно-радиального подшипника установили два, что зафиксировало рабочий зазор в винтовой паре и сделало её еще более надежной, нежели при выпуске с завода:

Ремонт винтового блока Rotorcomp NK100 22кВт

Винтовой блок Rotorcomp из состава компрессора Renner-Kompressoren прибыл к нам на ремонтную базу в заклиненном состоянии, честно отработав свои 5 лет с 2007 года:

Несмотря на регулярное обслуживание компрессора время взяло свое, износ опорных подшипников достиг критических допусков, масло уже не помогало в охлаждении винтовой пары и винтовые роторы уперлись в рабочую поверхность, приварившись к ней. Этот тип ремонта всегда непредсказуем по объему работ и получив карт-бланш от Заказчика приступили к разборке винтового блока. Было принято решение разбирать медленно и нежно, чтобы свести к минимуму повреждения при разъеме приварившихся частей. После упорной борьбы за сохранность, винтовая пара сдалась с минимальными потерями для кошелька Заказчика:

Повреждения крышки винтового блока тоже свели к минимуму:

Восстановили рабочие поверхности торцов винтов и плоскость крышки с помощью сварки, токарного и фрезерного станков, а также бесценных знаний и опыта наших механиков. Заменили опорные подшипники винтовой пары. Собрали и настроили винтовой блок. Вернули Заказчику с комментариями к кому обращаться и что делать, когда через 4-5 лет жесткой эксплуатации компрессора, рабочая температура масла снова начнет расти.