Дом, дизайн, ремонт, декор. Двор и сад. Своими руками

Дом, дизайн, ремонт, декор. Двор и сад. Своими руками

» » Строение и свойства бактерий микробиология. Слизь и включения

Строение и свойства бактерий микробиология. Слизь и включения

Обязательными органоидами являются : ядерный аппарат, цитоплазма, цитоплазматическая мембрана.

Необязательными (второстепенными) структурными элементами являются : клеточная стенка, капсула, споры, пили, жгутики.

1.В центре бактериальной клетки находится нуклеоид - ядерное образование, представленное чаще всего одной хромосомой кольцевидной формы. Состоит из двухцепочечной нити ДНК. Нуклеоид не отделен от цитоплазмы ядерной мембраной.

2.Цитоплазма - сложная коллоидная система, содержащая различные включения метаболического происхождения (зерна волютина, гликогена, гранулезы и др.), рибосомы и другие элементы белоксинтезирующей системы, плазмиды (вненуклеоидное ДНК), мезосомы (образуются в результате инвагинации цитоплазматической мембраны в цитоплазму, участвуют в энергетическом обмене, спорообразовании, формировании межклеточной перегородки при делении).

3.Цитоплазматическая мембрана ограничивает с наружной стороны цитоплазму, имеет трехслойное строение и выполняет ряд важнейших функций - барьерную (создает и поддерживает осмотическое давление), энергетическую (содержит многие ферментные системы- дыхательные, окислительно- восстановительные, осуществляет перенос электронов), транспортную (перенос различных веществ в клетку и из клетки).

4.Клеточная стенка - присуща большинству бактерий (кроме микоплазм, ахолеплазм и некоторых других не имеющих истинной клеточной стенки микроорганизмов). Она обладает рядом функций, прежде всего обеспечивает механическую защиту и постоянную форму клеток, с ее наличием в значительной степени связаны антигенные свойства бактерий. В составе - два основных слоя, из которых наружный- более пластичный, внутренний- ригидный.

Основное химическое соединение клеточной стенки, которое специфично только для бактерий- пептидогликан (муреиновые кислоты). От структуры и химического состава клеточной стенки бактерий зависит важный для систематики признак бактерий- отношение к окраске по Граму . В соответствии с ним выделяют две большие группы- грамположительные (“грам+”) и грамотрицательные (“грам - “) бактерии. Стенка грамположительных бактерий после окраски по Граму сохраняет комплекс йода с генциановым фиолетовым (окрашены в сине- фиолетовый цвет), грамотрицательные бактерии теряют этот комплекс и соответствующий цвет после обработки и окрашены в розовый цвет за счет докрашивания фуксином.

Особенности клеточной стенки грамположительных бактерий.

Мощная, толстая, несложно организованная клеточная стенка, в составе которой преобладают пептидогликан и тейхоевые кислоты, нет липополисахаридов (ЛПС), часто нет диаминопимелиновой кислоты.

Особенности клеточной стенки грамотрицательных бактерий.

Клеточная стенка значительно тоньше, чем у грамположительных бактерий, содержит ЛПС, липопротеины, фосфолипиды, диаминопимелиновую кислоту. Устроена более сложно- имеется внешняя мембрана, поэтому клеточная стенка трехслойная.

При обработке грамположительных бактерий ферментами, разрушающими пептидогликан, возникают полностью лишенные клеточной стенки структуры- протопласты . Обработка грамотрицательных бактерий лизоцимом разрушает только слой пептидогликана, не разрушая полностью внешней мембраны; такие структуры называют сферопластами . Протопласты и сферопласты имеют сферическую форму (это свойство связано с осмотическим давлением и характерно для всех безклеточных форм бактерий).

L - формы бактерий.

Под действием ряда факторов, неблагоприятно действующих на бактериальную клетку (антибиотики, ферменты, антитела и др.), происходит L - трансформация бактерий, приводящая к постоянной или временной утрате клеточной стенки. L- трансформация является не только формой изменчивости, но и приспособления бактерий к неблагоприятным условиям существования. В результате изменения антигенных свойств (утрата О- и К- антигенов), снижения вирулентности и других факторов L- формы приобретают способность длительно находиться (персистировать ) в организме хозяина, поддерживая вяло текущий инфекционный процесс. Утрата клеточной стенки делает L- формы нечувствительными к антибиотикам, антителам и различным химиопрепаратам, точкой приложения которых является бактериальная клеточная стенка. Нестабильные L- формы способны реверсировать в классические (исходные) формы бактерий, имеющие клеточную стенку. Имеются также стабильные L- формы бактерий, отсутствие клеточной стенки и неспособность реверстровать которых в классические формы бактерий закреплены генетически. Они по ряду признаков очень напоминают микоплазмы и другие молликуты - бактерии, у которых клеточная стенка отсутствует как таксономический признак. Микроорганизмы, относящиеся к микоплазмам- самые мелкие прокариоты, не имеют клеточной стенки и как все бактериальные бесстеночные структуры имеют сферическую форму.

К поверхностным структурам бактерий (необязательным, как и клеточная стенка), относятся капсула, жгутики, микроворсинки.

Капсула или слизистый слой окружает оболочку ряда бактерий. Выделяют микрокапсулу , выявляемую при электронной микроскопии в виде слоя микрофибрилл, и макрокапсулу , обнаруживаемую при световой микроскопии. Капсула является защитной структурой (прежде всего от высыхания), у ряда микробов- фактором патогенности, препятствует фагоцитозу, ингибирует первые этапы защитных реакций- распознавание и поглощение. У сапрофитов капсулы образуются во внешней среде, у патогенов- чаще в организме хозяина. Существут ряд методов окраски капсул в зависимости от их химического состава. Капсула чаще состоит из полисахаридов (наиболее распространенная окраска- по Гинсу ), реже- из полипептидов.

Жгутики. Подвижные бактерии могут быть скользящие (передвигаются по твердой поверхности в результате волнообразных сокращений) или плавающие, передвигающиеся за счет нитевидных спирально изогнутых белковых (флагеллиновых по химическому составу) образований- жгутиков.

По расположению и количеству жгутиков выделяют ряд форм бактерий.

1.Монотрихи- имеют один полярный жгутик.

2.Лофотрихи- имеют полярно расположенный пучок жгутиков.

3.Амфитрихи- имеют жгутики по диаметрально противоположным полюсам.

4.Перитрихи- имеют жгутики по всему периметру бактериальной клетки.

Способность к целенаправленному движению (хемотаксис, аэротаксис, фототаксис) у бактерий генетически детерминирована.

Фимбрии или реснички - короткие нити, в большом количестве окружающую бактериальную клетку, с помощью которых бактерии прокрепляются к субстратам (например, к поверхности слизистых оболочек). Таким образом, фимбрии являются факторами адгезии и колонизации .

F - пили (фактор фертильности) - аппарат конъюгации бактерий , встречаются в небольшом количестве в виде тонких белковых ворсинок.

Эндоспоры и спорообразование.

Спорообразование - способ сохранения определенных видов бактерий в неблагоприятных условиях среды. Эндоспоры образуются в цитоплазме, представляют собой клетки с низкой метаболической активностью и высокой устойчивостью (резистентностью ) к высушиванию, действию химических факторов, высокой температуры и других неблагоплиятных факторов окружающей среды. При световой микроскопии часто используют метод выявления спор по Ожешко . Высокая резистентность связана с большим содержанием кальциевой соли дипиколиновой кислоты в оболочке спор. Расположение и размеры спор у различных микроорганизмов отличается, что имеет дифференциально- диагностическое (таксономическое) значение. Основные фазы “жизненного цикла” спор- споруляция (включает подготовительную стадию, стадию предспоры, образования оболочки, созревания и покоя) и прорастание , заканчивающееся образованием вегетативной формы. Процесс спорообразования генетически обусловлен.

Некультивируемые формы бактерий.

У многих видов грамотрицательных бактерий, не образующих спор, существует особое приспособительное состояние- некультивируемые формы. Они обладают низкой метаболической активностью и активно не размножаются, т.е. не образуют колоний на плотных питательных средах, при посевах не выявляются. Обладают высокой устойчивостью и могут сохранять жизнеспособность в течение нескольких лет. Не выявляются классическими бактериологическими методами, обнаруживаются только при помощи генетических методов (полимеразной цепной реакции- ПЦР ).

Для изучения строения бактериальной клетки наряду со световым микроскопом применяют электронно-микроскопические и микрохимические исследования, позволяющие определить ультраструктуру бактериальной клетки.

Бактериальная клетка (рис. 5) состоит из следующих частей: трехслойной оболочки, цитоплазмы с различными включениями и ядерного вещества (нуклеоида). Дополнительными структурными образованиями являются капсулы, споры, жгутики, пили.


Рис. 5. Схематическое изображение строения бактериальной клетки. 1 - оболочка; 2 - слизистый слой; 3 - клеточная стенка; 4 - цитоплазматическая мембрана; 5 - цитоплазма; 6 - рибосома; 7 - полисома; 8 - включения; 9 - нуклеоид; 10 - жгутик; 11 - пили

Оболочка клетки состоит из наружного слизистого слоя, клеточной стенки и цитоплазматической мембраны.

Слизистый капсульный слой находится снаружи клетки и выполняет защитную функцию.

Клеточная стенка - один из основных структурных элементов клетки, сохраняющий ее форму и отделяющий клетку от окружающей среды. Важным свойством клеточной стенки является избирательная проницаемость, которая обеспечивает проникновение в клетку необходимых питательных веществ (аминокислот, углеводов и др.) и выведение из клетки продуктов обмена. Клеточная стенка сохраняет внутри клетки постоянное осмотическое давление. Прочность стенки обеспечивает муреин, вещество полисахаридной природы. Некоторые вещества разрушают клеточную стенку, например лизоцим.

Бактерии, полностью лишенные клеточной стенки, называются протопластами. Они сохраняют способность к дыханию, делению, синтезу ферментов; к воздействию внешних факторов: механическому повреждению, осмотическому давлению, аэрации и др. Сохранить протопласты можно только в гипертонических растворах.

Бактерии с частично разрушенной клеточной стенкой называются сферопластами. Если подавить процесс синтеза клеточной стенки с помощью пенициллина, то образуются L-формы, которые у всех видов бактерий представляют шаровидные крупные и мелкие клетки с вакуолями.

Цитоплазматическая мембрана плотно прилегает к клеточной стенке с внутренней стороны. Она очень тонкая (8-10 нм) и состоит из белков и фосфолипидов. Это пограничный полупроницаемый слой, через который осуществляется питание клетки. В мембране находятся ферменты пермеазы, осуществляющие активный перенос веществ, и ферменты дыхания. Цитоплазматическая мембрана образует мезосомы, принимающие участие в делении клетки. При помещении клетки в гипертонический раствор мембрана может отделиться от клеточной стенки.

Цитоплазма - внутреннее содержимое бактериальной клетки. Она представляет собой коллоидную систему, состоящую из воды, белков, углеводов, липидов, различных минеральных солей. Химический состав и консистенция цитоплазмы изменяются в зависимости от возраста клетки и условий окружающей среды. В цитоплазме находятся ядерное вещество, рибосомы и различные включения.

Нуклеоид, ядерное вещество клетки, ее наследственный аппарат. Ядерное вещество прокариотов в отличие от эукариотов не имеет собственной мембраны. Нуклеоид зрелой клетки представляет собой двойную нить ДНК, свернутую в кольцо. В молекуле ДНК закодирована генетическая информация клетки. По генетической терминологии ядерное вещество получило название генофор или геном.

Рибосомы находятся в цитоплазме клетки и выполняют функцию синтеза белка. В состав рибосомы входит 60% РНК и 40% белка. Количество рибосом в клетке достигает 10000. Соединяясь вместе, рибосомы образуют полисомы.

Включения - гранулы, содержащие различные запасные питательные вещества: крахмал, гликоген, жир, волютин. Они расположены в цитоплазме.

Клетки бактерий в процессе жизнедеятельности образуют защитные органеллы - капсулы и споры.

Капсула - внешний уплотненный слизистый слой, примыкающий к клеточной стенке. Это защитный орган, который появляется у некоторых бактерий при попадании их в организм человека и животных. Капсула предохраняет микроорганизм от защитных факторов организма (возбудители пневмонии и сибирской язвы). Некоторые микроорганизмы имеют постоянную капсулу (клебсиеллы).

Споры встречаются только у палочковидных бактерий. Они образуются при попадании микроорганизма в неблагоприятные условия внешней среды (действие высоких температур, высыхание, изменение рН, уменьшение количества питательных веществ в среде и т. д.). Споры находятся внутри бактериальной клетки и представляют уплотненный участок цитоплазмы с нуклеоидом, одетый собственной плотной оболочкой. По химическому составу они отличаются от вегетативных клеток малым количеством воды, увеличенным содержанием липидов и солей кальция, что способствует высокой устойчивости спор. Спорообразование происходит в течение 18-20 ч; при попадании микроорганизма в благоприятные условия спора в течение 4-5 ч прорастает в вегетативную форму. В бактериальной клетке образуется только одна спора, следовательно, споры не являются органами размножения, а служат для переживания неблагоприятных условий.

Спорообразующие аэробные бактерии называются бациллами, а анаэробные - клостридиями.

Споры отличаются по форме, размерам и расположению в клетке. Они могут располагаться центрально, субтерминально и терминально (рис. 6). У возбудителя сибирской язвы спора располагается центрально, ее размер не превышает поперечника клетки. Спора возбудителя ботулизма расположена ближе к концу клетки - субтерминально и превышает ширину клетки. У возбудителя столбняка округлая спора располагается на конце клетки - терминально и значительно превышает ширину клетки.

Жгутики - органы движения, характерны для палочковидных бактерий. Это тонкие нитевидные фибриллы, состоящие из белка - флагеллина. Длина их значительно превышает длину бактериальной клетки. Жгутики отходят от базального тельца, расположенного в цитоплазме, и выходят на поверхность клетки. Наличие их можно обнаружить по определению подвижности клеток под микроскопом, в полужидкой питательной среде или при окраске специальными методами. Ультраструктура жгутиков изучена в электронном микроскопе. По расположению жгутиков бактерии делят на группы (см. рис. 6): монотрихи - с одним жгутиком (возбудитель холеры); амфитрихи - с пучками или единичными жгутиками на обоих концах клетки (спириллы); лофотрихи - с пучком жгутиков на одном конце клетки (фекальный щелочеобразователь); перитрихи - жгутики расположены по всей поверхности клетки (кишечные бактерии). Скорость движения бактерий зависит от количества и расположения жгутиков (наиболее активны монотрихи), от возраста бактерий и влияния окружающих факторов.



Рис. 6. Варианты расположения спор и жгутиков у бактерий. I - споры: 1 - центральное; 2 - субтерминальное; 3 - терминальное; II - жгутики: 1 - монотрихи; 2 - амфитрихи; 3 - лофотрихи; 4 - перитрихи

Пили или фимбрии - ворсинки, расположенные на поверхности бактериальных клеток. Они короче и тоньше жгутиков и также имеют спиральную структуру. Состоят пили из белка - пилина. Одни пили (их несколько сотен) служат для прикрепления бактерий к клеткам животных и человека, с другими (единичными) связана передача генетического материала из клетки в клетку.

Микоплазмы

Микоплазмы - клетки, не имеющие клеточной стенки, но окруженные трехслойной липопротеидной цитоплазматической мембраной. Микоплазмы могут быть сферической, овальной формы, в виде нитей и звезд. Микоплазмы по классификации Берги выделены в отдельную группу. В настоящее время этим микроорганизмам уделяется все большее внимание как возбудителям заболеваний воспалительного характера. Размеры их различны: от нескольких микрометров до 125-150 нм. Мелкие микоплазмы проходят через бактериальные фильтры и называются фильтрующимися формами.

Спирохеты

Спирохеты (см. рис. 52) (от лат. speira - изгиб, chaite - волосы) - тонкие, извитые, подвижные одноклеточные организмы, имеющие размеры от 5 до 500 мкм в длину и 0,3-0,75 мкм в ширину. С простейшими их роднит способ движения путем сокращения внутренней осевой нити, состоящей из пучка фибрилл. Характер движения спирохет различен: поступательное, вращательное, сгибательное, волнообразное. В остальном строение клетки типичное для бактерий. Некоторые спирохеты слабо окрашиваются анилиновыми красителями. Спирохеты разделяют на роды по количеству и форме завитков нити и ее окончанию. Кроме сапрофитных форм, распространенных в природе и организме человека, среди спирохет имеются болезнетворные - возбудители сифилиса и других заболеваний.

Риккетсии

Вирусы

Поиск на сайте.

По мнению ученых, бактериям более 3,5 миллиардов лет. Они существовали на Земле задолго до появления высокоорганизованных организмов. Находясь у истоков жизни, бактериальные организмы получили элементарное строение по прокариотическому типу, характеризующееся отсутствием оформленного ядра и ядерной оболочки. Одним из факторов, повлиявших на формирование их биологических свойств, является оболочка бактерий (клеточная стенка).

Функции внешней стенки

Стенка бактерии призвана выполнять несколько основополагающих функций:

  • быть скелетом бактерии;
  • придавать ей определенную форму;
  • осуществлять связь с внешней средой;
  • защищать от вредных воздействий окружающих факторов;
  • участвовать в делении бактериальной клетки, которая не имеет ядра и ядерной оболочки;
  • удерживать на своей поверхности антигены и различного рода рецепторы (характерно для грамотрицательных бактерий).

У определенных видов бактерий есть наружная капсула, которая отличается прочностью и служит для сохранения целостности микроорганизма длительное время. В таком случае оболочка у бактерий является промежуточной формой между цитоплазмой и капсулой. Некоторые бактерии (например, лейконосток) имеют особенность заключать в одну капсулу несколько клеток. Это называется зоогелем.

Химический состав капсулы характеризуется наличием полисахаридов и большого количества воды. Капсула также может обеспечивать возможность бактерии прикрепиться к определенному объекту.

От того, насколько легко вещество проникает через оболочку, зависит степень его усвояемости бактерией. Большую вероятность проникновения имеют молекулы с длинными участками цепи, обладающими устойчивостью к биодеградации.

Что представляет собой оболочка?

Бактериальная оболочка состоит из липополисахаридов, протеинов, липопротеидов, тейхоевых кислот. Основополагающим компонентом является муреин (пептидогликан).

Толщина клеточной стенки может быть различной и достигать 80 нм. Поверхность – не сплошная, имеет поры различного диаметра, через которые микроб получает питательные вещества и выделяет продукты своей жизнедеятельности.

О значимости наружной стенки свидетельствует её значительный вес – он может колебаться от 10 до 50% сухой массы всей бактерии. Цитоплазма может выпячиваться, меняя внешний рельеф бактерии.

Сверху оболочка может быть покрыта ресничками либо на ней могут располагаться жгутики, которые состоят из флагеллина – специфического вещества белковой природы. Для крепления к бактериальной оболочке у жгутиков есть особые структуры – плоские диски. Бактерии с одним жгутиком называются монотрихами, с двумя – амфитрихами, с пучком – лофотрихами, с множеством пучков – перитрихами. Не имеющие жгутиков микроорганизмы называются атрихиями.

Клеточная оболочка имеет внутреннюю часть, которая начинает формироваться после завершения роста клетки. В отличие от наружной, она состоит из гораздо меньшего количества воды и имеет большую эластичность и прочность.

Процесс синтеза стенок микроорганизмов начинается внутри бактерии. Для этого в ней имеется сеть полисахаридных комплексов, которые чередуются в определенной последовательности (ацетилглюкозамин и ацетилмурамовая кислота) и связываются между собой прочными пептидными связями. Сборка стенки осуществляется снаружи, на плазматической мембране, где оболочка и располагается.

Поскольку бактерия не имеет ядра, то и ядерной оболочки у нее не имеется.

Оболочка представляет собой неокрашенную тонкую структуру, которую без специальной окраски клеток даже невозможно рассмотреть. Для этого используют плазмолиз и затемненное поле зрения.

Окрашивание по Граму

Для изучения подробной структуры клетки в 1884 году Христиан Грам предложил особый способ её окраски, который в последующем был назван его именем. Окраска по Граму делит все микроорганизмы на грамположительные и грамотрицательные. Для каждого вида характерны свои биохимические и биологические свойства. Различная окраска обусловлена и строением клеточной стенки:

  1. Грамположительные бактерии имеют массивную оболочку, которая включает полисахариды, белки и липиды. Она прочная, поры имеют минимальную величину, краска, применяемая для окрашивания, плотно проникает вглубь и практически не вымывается. Такие микроорганизмы приобретают сине-фиолетовый цвет.
  2. Грамотрицательные бактериальные клетки имеют определенные отличия: толщина их стенки меньше, зато оболочка имеет два слоя. Внутренний слой состоит из пептидогликана, который имеет более рыхлую структуру и широкие поры. Краска при окрашивании по Граму легко вымывается этанолом. Клетка при этом обесцвечивается. В дальнейшем методикой предусмотрено добавление контрастного красного красителя, который окрашивает бактерии в красный или розовый цвет.

Удельный вес грамположительных микробов, безвредных для человека, гораздо превышает грамотрицательные. На сегодняшний день классифицировано три группы грамотрицательных микроорганизмов, которые вызывают у человека заболевания:

  • кокки (стрептококки и стафилококки);
  • неспорообразующие формы (коринебактерии и листерии);
  • спорообразующие формы (бациллы, клостридии).

Характеристика периплазматического пространства

Между бактериальной стенкой и мембраной цитоплазмы находится периплазматическое пространство, которое состоит из ферментов. Этот компонент является обязательной структурой, он составляет 10-12% сухой массы бактерии. Если мембрана по какой-то причине разрушается, клетка гибнет. Генетическая информация располагается непосредственно в цитоплазме, не отделяется от неё ядерной оболочкой.

Независимо от того, является микроб грамположительным или грамотрицательным, это осмотический барьер микроорганизма, транспортер органических и неорганических молекул вглубь клетки. Доказана и определенная роль периплазмы в росте микроорганизма.

Бактерии, несмотря на их очевидную простоту, имеют хорошо развитую структуру клетки, которая отвечает за многие их уникальных биологических свойств. Многие конструктивных деталей уникальные для бактерий и не найдены среди архей или эукариот. Однако, несмотря на относительную простоту бактерий и легкость выращивания отдельных штаммов, много бактерий не удается вырастить в лабораторных условиях, а их структуры часто слишком малы для изучения. Поэтому, хотя некоторые принципы строения бактериальной клетки хорошо изучены и даже применяются для других организмов, большинство уникальных черт и структур бактерий все еще неизвестны.

морфология клетки

Большинство бактерий имеют или сферическую форму, так называемые коки (от греческого слова kókkos — зерно или ягода), или палочкообразную, так называемые бациллы (от латинского слова bacillus — палочка). Некоторые палочковидных бактерий (вибрионы) несколько согнуты, а другие формируют спиральные завитки (спирохеты). Все это разнообразие форм бактерий определяется структурой их клеточной стенки и цитоскелета. Эти формы важны для функционирования бактерий поскольку они могут влиять на способность бактерий получать питательные вещества, прикрепляться к поверхностям, двигаться и спасаться от хищников.

Размер бактерий

Бактерии могут иметь большой набор форм и размеров (или морфологи). По размеру бактериальные клетки обычно в 10 раз меньше, чем клетки эукариот, конечно имея только 0,5-5,0 мкм в своем крупнейшем размере, хотя гигантские бактерии, такие как Thiomargarita namibiensis и Epulopiscium fishelsoni, могут вырастать до 0,5 мм в размере и быть видимыми невооруженным глазом. Наименьшими свободно-живущими бактериями является микоплазмы, члены рода Mycoplasma, лишь 0,3 мкм в длину, примерно равные по размеру крупнейшим вирусам.

Мелкий размер важен для бактерий, потому что он приводит к большому соотношение площади поверхности к объему, помогает быстрому транспорта питательных веществ и выделению отходов. Низкое соотношениях площади поверхности к объему, наоборот, ограничивает скорость метаболизма микроба. Причина для существования крупных клеток неизвестна, хотя кажется, что большой объем используется прежде всего для хранения дополнительных питательных веществ. Однако, существует и наименьший размер свободно-живущей бактерии. Согласно теоретическим подсчетам, сферическая клетка диаметром менее 0,15-0,20 мкм становится неспособной к самостоятельному воспроизведению, поскольку в ней физически не помещаются все необходимые биополимеры и структуры в достаточном количестве. Недавно были описаны нанобактерии (и подобные нанобы и ультрамикробактерии), имеющих размеры меньше «допустимых», хотя факт существования таких бактерий все еще ​​остается под вопросом. Они, в отличие от вирусов, способны к самостоятельному росту и размножению, но требуют получения ряда питательных веществ, которые они не могут синтезировать, от клетки-хозяина.

Структура клеточной оболочки

Как в других организмах, бактериальная клеточная стенка обеспечивает структурную целостность клетки. У прокариот, первичная функция клеточной стенки — защита клетки от внутреннего тургора вызванного намного выше концентрациями белков и других молекул внутри клетки по сравнению с окружающими. Бактериальная клеточная стенка отличается от стенки всех других организмов наличием пептидогликана (роли-N-ацетилглюкозамина и N-ацетомурамиева кислота), который размещается непосредственно за пределами цитоплазмитичнои мембраны. Пептидогликан отвечает за жесткость бактериальной клеточной стенки и частично за определение формы клетки. Он относительно пористый и не противодействует проникленню малых молекул. Большинство бактерий имеют клеточные стенки (с несколькими исключениями, например микоплазма и родственные бактерии), но не все клеточные стенки имеют такую ​​же структуру. Существует два основных типа бактериальных клеточных стенок, в грамположительных и грамотрицательных бактерий, которые отличаются с помощью окрашивания по Граму.

Клеточная стенка грамположительных бактерий

Клеточная стенка грамположительных бактерий характеризуется присутствием очень толстого слоя пептидогликана, который отвечает за утримянни красителя генциановый фиолетового во время процедуры окрашивания по Граму. Такая стенка найдена исключительно в организмах, принадлежащих к типам Actinobacteria (или грамм-положительные бактерии с высоким содержанием% G + C) и Firmicutes (или грамм-положительные бактерии с низким содержанием% G + C). Бактерии в группе Deinococcus-Thermus также могут положительно краситься по Граму, но содержат некоторые структуры клеточной стенки, типичные для грамотрицательных организмов. В клеточную стенку грамположительных бактерий встроенные полиспирты, называемые техоевою кислотой, некоторые из которых связаны с липидами, формируя липотехоеви кислоты. Поскольку липотехоеви кислоты ковалентно связываются с липидами в пределах цитоплазматической мембраны, они отвечают за соединение пептидогликана с мембраной. Техоева кислота оказывает грамм-позитивным бактериям положительный электрический помогут благодаря фосфодиестерним связям между мономерами техоевои кислоты.

Клеточная стенка грамотрицательных бактерий

В отличие от грамположительных бактерий, грамотрицательные бактерии содержат очень тонкий слой пептидогликана, отвечающий за неспособность клеточных стенок содержать краситель кристал-виолет течение процедуры окрашивания по Граму. В дополнение к слою пептидогликанов, грам-отрицательные бактерии имеют вторую, так называемую внешнюю мембрану, находится кнаружи от клеточной стенки и компонует фосфолипиды и Липополисахарид на своей внешней стороне. Отрицательно заряженные Липополисахарид также предоставляют клетке отрицательный электрический заряд. Химическая структура Липополисахарид внешней мембраны часто уникальная для отдельных штаммов бактерий и часто отвечает за реакцию антигенов с представителями этих штаммов.

внешняя мембрана

Как любой двойной слой фосфолипидов, внешняя мембрана достаточно непроницаема для всех заряженных молекул. Однако, белковые каналы (окунитесь) присутствуют во внешней мембране, позволяют пассивный транспорт многих ионов, сахара и аминокислот через внешнюю мембрану. Таким образом, эти молекулы присутствуют в периплазматическое, слое между внешней и цитоплазматической мембранами. Периплазматическое содержит слой пептидогликана и много белков, шо отвечают за гидролиз и прием внеклеточных сигналов. Читается, что перивлазма гелеобразная, а не жидкая, из-за высокого содержания белка и пептидогликана. Сигналы и живильни вещества с периплазматическое попадают в цитоплазму клетки используя транспортные белки в цитоплизматичний мембране.

Бактериальная цитоплазматическая мембрана

Бактериальная циоплазматична мембрана составлена ​​из двойного слоя фосфолипидов, и поэтому имеет все общие функции цитоплазматической мембраны, действуя как барьер проницаемости для большинства молекул и заключая транспортные белки, регулирующие транспорт молекул в клетки. В дополнение к этим функциям, на бактериальных цитоплазматических мембранах также протекают реакции энергетического цикла. В отличие от эукариот, бактериальные мембраны (с некоторыми исключениями, например в микоплазм и метанотрофов) в целом не содержат стеролов. Однако, многие бактерии содержат структурно связаны соединения, так называемые хопаноиды, предположительно выполняют ту же функцию. В отличие от эукариот, бактерии могут иметь широкое разнообразие жирных кислот в своих мембран. Вместе с типичными насыщенными и ненасыщенными жирными кислотами, бактерии могут содержать жирные кислоты с дополнительными метильными, гидрокси- или даже циклическими группами. Относительные пропорции этих жирных кислот бактерия может регулировать для поддержания оптимальной текучесть мембраны (например, при изменениях температуры).

Поверхностные структуры бактерий

Ворсинки и фимбрии

Ворсинки и фимбрии (pili, fimbriae) — восточные по строению поверхностные структуры бактерий. Сначала эти сроки были введены отдельно, но сейчас подобные структуры классифицируются как ворсинки I, IV типов и половые ворсинки, но многие другие типы остаются неклассифицированными.

Половые ворсинки — очень длинные (5-20 микрон) и присутствующие на бактериальной клетке в небольшом количестве. Они используются для обмена ДНК при бактериальной конъюгации.

Ворсинки или фимбрии I типа — короткие (1-5 микрон), тянутся от внешней мембраны во многих направлениях, имеют трубчатую форму, присутствующие в багатох членах типа Proteobacteria. Эти ворсинки обычно используются для прикрепления к поверхности.

Ворсинки или фимбрии IV типа — средней длины (около 5 микрон), расположенные на полюсах бактерий. Ворсинки IV типа помогают прикрепляться к поверхностям (например, при формировании биофильмы), или к другим клеткам (например, животных клеток в течение патогенеза)). Некоторые бактерии (например, Myxococcus) используют ворсинки IV типа как механизм движения.

S-слой

На поверхности, вне слоем пептидигликану или внешней мембраной, часто располагается белковый S-слой. Хотя функция этого слоя до конца не известна, считается, что этот слой обеспечивает химический и физический защиту поверхности клетки и может служить макромолекулярным барьером. Считается также, что S-слои могут иметь и другие функции, например, они могут служить факторами патогенности в Campylobacter и содержат внешние ферменты в Bacillus stearothermophilus.

Капсулы и слизь

Многие бактерии выделяют внеклеточные полимеры за пределами своих клеточных стенок. Эти полимеры обычно составлены из полисахаридов и иногда белков. Капсулы — относительно непроницаемые структуры, которые не могут быть крашеные многими красителями. Они вообще используются для к прикреплению бактерий к другим клеткам или неживых поверхностей при формировании биофильмы. Они имеют различную структуру от неорганизованного слизистого слоя из клеточных полимеров в чрезвычайно структурированных мембранных капсул. Иногда эти структуры вовлечены в защиту клеток от поглощения клетками эукариот, например, макрофагами. Также выделение слизи имеет сигнальную финкции для медленно-подвижных бактерий и, возможно, используется непосредственно для движения бактерий.

жгутики

Возможно, наиболее легко розпознаваемимы внеклеточными структурами бактериальной клетки является жгутики. Бактериальные жгутики — это нитчатые структуры, активно вращаются вокруг своей оси с помощью жгутикового мотора и отвечают за движение многих бактерий в жидкой среде. Расположение жгутиков зависит от вида бактерий и бывает нескольких типов. Жгутики клетки — сложные структуры, состоящие из многих белков. Сам филамент составленный из включают флагеллина (FlaA), который формирует филамент трубчатой ​​формы. Базальное мотор — это большой белковый комплекс, который охватывает клеточную стенку и обе ее мембраны (если они есть), формируя вращательное мотор. Этот мотор движется за счет электрического потенциалу на цитоплазматической мембране.

системы секреции

Кроме того, в цитоплазматической мембране и клеточной оболочке расположены специализированные системы секреции, структура которых зависит от вида бактерии.

Внутренняя структура

По сравнению с эукариот внутриклеточная струкрира бактериальной клетки несколько проще. Бактерии почти не содержат мембранных органелл, как эукариоты Конечно, хромосома и рибосомы являются единственными легко заметными внутриклеточными структурами, найденными во всех бактерий. Хотя некоторые группы бактерий содержат сложные специализированные внутриклеточные структуры, ниже обшлворюються некоторые из них.

Цитоплазма и цитоскелет

Вся внутренняя часть бактериальной клетки в пределах внутренней мембраны называется цитоплазмой. Гомогенная фракция цитоплазмы, содержащей набор растворимых РНК, белков, продуктов и субстратов метаболических реакций, назиаеться цитозолем. Другая часть цитоплазмы представлена ​​различными структурными элементами, включающих хромосому, рибосомы, цитоскелет бактерий и другие. До недавнего времени считалось, что бактерии не имеют цитоскелета, но сейчас в бактериях найдены ортологи или даже гомологи всех типов филаментов эукариот: микротрубочек (FtsZ), актина (MreB и ParM) и промежуточных филаментов (Кресцентин). Цитоскелет выполняет много функций, часто отвечая за форму клетки и за внутриклеточный транспорт.

Бактериальная хромосома и плазмиды

В отличие от эукариот, бактериальная хромосома не находится ли во внутренней части ограниченного мембраной ядра, но находится в цитоплазме. Это означает, что передача клеточной информации через процессы трансляции, трансклипции и репликации происходит в пределах того же компартмента и ее компоненты могут взаимодействовать с другими структурами цитоплазмы, в частности, рибосомами. Бактериальная хромосома без упаковки используя гистоны, как у эукариот, но вместо того существует в виде компактной суперзакрученои структуры, называемый нуклеоидом. Сами бактериальные хромосомы круговые, хотя существуют примеры линейных хромосом (например, в Borrelia burgdorferi). Вместе с хромосомной ДНК, большинство бактерий также содержат маленькие независимые куски ДНК, называемые плазмиды, которые часто кодируют отдельные белки, которые выгодны но не имеет большого значения для бактерии-хозяина. Плазмиды могут быть легко приобретенными или потерянными бактерией и могут переноситься между бактериями как форма горизонтального переноса генов.

Рибосомы и белковые комплексы

В большинстве бактерий, многочисленными внутриклеточными структурами рибосомы, место синтеза белков во всех живых организмах. Рибосомы бактерий также несколько отличаются от рибосом эукариот и архей и имеют константу седиментации 70S (в отличие от 80S у эукариот). Хотя рибосомы — наиболее Распространено внутриклеточный белковый комплекс в бактериях, иногда с помощью электронной микроскопии наблюдаются другие крупные комплексы, хотя в большинстве случаев их назначение неизвестно.

внутренние мембраны

Одним из основных отличий клетки бактерий от клетки эукариот является отсутствие ядерной мембраны и, зачастую, отсутствие вообще мембран внутри цитоплизмы. Многие важных биохимических реакций, например, реакции энергетического цикла, происходят благодаря ионным градиентам через мембраны, создавая разность потенциалов подобно батареи. Отсутствие внутренних мембран в бактериях означает, что эти реакции, например, перенос электрона в реакциях электронно-транспортной цепочки, происходят через цитоплазматическую мембрану, между цитоплазмой и периплазматическое. Однако, в некоторых фотосинтезирующих бактерий существует развитая сеть производных от цитоплазматической фотоситетичних мембран. В пурпурных бактерий (например, Rhodobacter) они сохранили связь с цитоплазматической мембраной, легко обнаруживается на срезах под электронным микроскопом, но у цианобактерий эта связь или трудно оказывается, или потерянный в процессе эволюции.

гранулы

Некоторые бактерии формируют внутриклеточные гранулы для хранения питательных веществ, таких как гликоген, полифосфат, сера или полигидроксиалканоаты, что дают бактериям возможность хранить эти вещества для использования позже.

газовые везикулы

Газовые везикулы — веретенообразные структуры, найденные в некоторых плвнктонних бактериях, обеспечивающих плавучесть клеткам этих бактерий, уменьшая их полную плотность. Они состоят из белковой оболочки, очень непроницаемой к воде, но проникающих в большинстве газов. Налаживая количество наличии газа в своих газовых везикулах, бактерия может увеличивать или уменьшать свою полную плотность и таким образом двигаться вверх или вниз в пределах толщи воды, поддерживая себя в окружении, оптимальном для роста.

Карбоксисомы

Карбоксисомы — внутриклеточные структуры, найденные во многих автотрофных бактериях, например Cyanobacteria, нитрозных бактериях и Nitrobacteria. Это белковые структуры, напоминающие глав вирусные частицы по морфологии, и содержат ферменты фиксации углекислоты в этих организмах (особенно рибулозо-биcфосфат-карбоксиласа / оксигеназы, RuBisCO, и карбоангидразы). Считается, что высокая локальная концентрация ферментов вместе с быстрой конверсии бикарбоната до углекислоты карбоангидразы позволяет быструю и эффективную фиксацию углекислоты, чем возможно внутри цитоплазмы.

Известно, что подобные структуры содержат кофермент B12-содержа глицерин-дегидратазы, ключевой фермент ферментации глицерина до 1,3-пропанедиолу в некоторых представителях семейства Enterobacteriaceae (например Salmonella).

Магнетосомы

Известным классом мембранных органелл бактерий, которые больше напоминают эукариотические органеллы, но, возможно, тоже связаны с цитоплазматической мембраной, является магнетосомы, присутствующие в магнетотактичних бактерий.

Бактерии в хозяйстве

При участии бактерий получают кисломолочнi продукты (кефир сыры) оцотову кислоту. Определенные группы бактерий используют для изготовления антибиотиков и витаминов. Применяют для квашения капусты и дубления кожи. А в сельском хозяйстве бактерii используют для изготовления и хранения зеленых кормов для животных.

Жаль в хозяйстве

Бактерii могут портить продукты питания. Поселяясь в продуктах они производят ядовитые вещества как для человека так и для животного.Если своевременно НЕ применить сыворотку и препараты отравлена ​​человек может погибнуть! Поэтому перед употреблением обязательно мойте овощи и фрукты!

Споры и неактивные формы бактерий

Некоторые бактерии типа Firmicutes способные к формированию эндоспор, позволяющие им выдержать экстремальные экологические и химические условия (например, грамм-положительные Bacillus, Anaerobacter, Heliobacterium и Clostridium). Почти во всех случаях формируется одна ендоспрора, поэтому это не процесс воспроизводства, хотя Anaerobacter может формировать до семи эндоспор на клетку. Эндоспоры имеют центральное ядро, составленное из цитоплазмы содержащий ДНК и рибосомы, окруженное слоем пробки и защищено непроницаемой и жесткой оболочкой. Эндоспоры не показывают никакого метаболизма и могут выдержать экстремальный физико-химический давление, например высокие уровни ультрафиолетового излучения, гамма-излучения, детергентов, дезинфицирующих средств, нагрев, давления и висушивання. В таком неактивном состоянии эти организмы, в некоторых случаях, мужуть оставаться жизнеспособными в течение миллионов лет и выживать даже в космическом пространстве. Эндоспоры могут быть причиной заболеваний, например, при сибирская язва может быть вызвана вдыханием эндоспор Bacillus anthracis.

Метан-окисляющие бактерии в роду Methylosinus также формируют устойчивые к высушиванию споры, так называемые экзоспоры, потому что они формируются почкованием на конце клетки. Экзоспоры не содержат диаминопиколиновои кислоты, характерного компонента эндоспор. Цисты — это другие неактивные, окружены толстой стенкой структуры, образующиеся членами родов Azotobacter, Bdellovibrio (бделоцисты), и Myxococcus (миксоспоры). Они устойчивы к высушиванию и других вредностей, но в меньшей степени, чем ендопоры. При образовании цист представителями Azotobacter, деление клетки завершается образованием толстой многослойной стенки и оболочки, окружающей клетку. Нитчатые Actinobacteria формируют воспроизводительные споры двух категорий: кондициоспоры, которые являются цепочками спор, сформированных из мицелиеподибник нитей, и спорангиеспоры, которые формируются в специализированных мешочках, спорангиях.

Видео по теме



Добавить свою цену в базу

Комментарий

С точки зрения современной науки прокариоты имеют примитивное строение. Но именно эта «незатейливость» помогает выживать им в самых неожиданных условиях. Например, в сероводородных источниках или на атомных полигонах. Ученые подсчитали, что общая масса всех земных микроорганизмов составляет 550 миллиардов тонн.

Бактерии имеют одноклеточное строение . Но это не значит, что бактериальные клетки пасуют перед клетками животных или растений. Микробиология уже располагает знаниями о сотнях тысяч видов микроорганизмов. Тем не менее, представители науки ежедневно открывают новые их виды и особенности.

Немудрено, что для полного освоения поверхности Земли микроорганизмам приходится принимать разнообразные формы:

  • кокки – шарики;
  • стрептококки – цепочки;
  • бациллы – палочки;
  • вибрионы – изогнутые запятые;
  • спириллы – спиральки.

Размер бактерий измеряют в нанометрах и микрометрах. Их средняя величина составляет 0,8 мкм. Но среди них имеются прокариоты-гиганты, достигающие 125 мкм и больше. Настоящими великанами среди лилипутов являются спирохеты длиной в 250 мкм. Сравните теперь с ними размер самой мелкой прокариотической клеточки: микоплазмы «вырастают» совсем чуть-чуть и достигают 0,1-0,15 мкм в диаметре.

Стоит сказать, что великанам-бактериям не так легко выжить в окружающей среде. Им сложно найти себе достаточно питательных веществ для успешного выполнения своей функции. Но зато они не являются легкой добычей для бактерий-хищников, которые питаются своими собратьями – одноклеточными микроорганизмами, «обтекая» и поедая их.

Внешнее строение бактерий

Клеточная стенка

  • Клеточная стенка бактериальной клетки является для нее защитой и опорой. Она придает микроорганизму свою, специфическую форму.
  • Клеточная стенка проницаема. Через нее проходят питательные вещества внутрь и продукты обмена (метаболизма) наружу.
  • Некоторые виды бактерий вырабатывают специальную слизь, которая напоминает капсулу, предохраняющую их от высыхания.
  • У некоторых клеток имеются жгутики (один или несколько) или ворсинки, которые помогают им передвигаться.
  • У бактериальных клеток, которые при окрашивании по Граму приобретают розовую окраску (грамотрицательные ), клеточная стенка более тонкая, многослойная. Ферменты, благодаря которым происходит расщепление питательных веществ, выделяются наружу.
  • У бактерий, которые при окрашивании по Граму приобретают фиолетовую окраску (грамположительные ), клеточная стенка толстая. Питательные вещества, которые поступают в клетку, расщепляются в периплазматическом пространстве (пространство между клеточной стенкой и мембраной цитоплазмы) гидролитическими ферментами.
  • На поверхности клеточной стенки имеются многочисленные рецепторы. К ним прикрепляются убийцы клеток – фаги, колицины и химические соединения.
  • Липопротеиды стенки у некоторых видов бактерий являются антигенами, которые называются токсинами.
  • При длительном лечении антибиотиками и по ряду других причин некоторые клетки теряют оболочку, но сохраняют способность к размножению. Они приобретают округлую форму – L-форму и могут длительно сохраняться в организме человека (кокки или палочки туберкулеза). Нестабильные L-формы обладают способностью принимать первоначальный вид (реверсия).

Капсула

При неблагоприятных условиях внешней среды бактерии образуют капсулу. Микрокапсула плотно прилегает к стенке. Ее можно увидеть только в электронном микроскопе. Макрокапсулу часто образуют патогенные микробы (пневмококки). У клебсиеллы пневмонии макрокапсула обнаруживаются всегда.

Капсулоподобная оболочка

Капсулоподобная оболочка представляет собой образование, непрочно связанное с клеточной стенкой. Благодаря бактериальным ферментам капсулоподобная оболочка покрывается углеводами (экзополисахаридами) внешней среды, благодаря чему обеспечивается слипание бактерий с разными поверхностями, даже совершенно гладкими. Например, стрептококки, попадая в организм человека, способны слипаться с зубами и сердечными клапанами.

Функции капсулы многообразны:

  • защита от агрессивных условий внешней среды,
  • обеспечение адгезии (слипанию) с клетками человека,
  • обладая антигенными свойствами, капсула оказывает токсический эффект при внедрении в живой организм.

Жгутики

  • У некоторых бактериальных клеток имеются жгутики (один или несколько) или ворсинки, которые помогают передвигаться. В составе жгутиков находится сократительный белок флагелин.
  • Количество жгутиков может быть разным – один, пучок жгутиков, жгутики на разных концах клетки или по всей поверхности.
  • Движение (беспорядочное или вращательное) осуществляется в результате вращательного движения жгутиков.
  • Антигенные свойства жгутиков оказывают токсический эффект при заболевании.
  • Бактерии, не имеющие жгутиков, покрываясь слизью, способны скользить. У водных бактерий содержатся вакуоли в количестве 40 – 60, наполненные азотом.

Они обеспечивают погружение и всплытие. В почве бактериальная клетка передвигается по почвенным каналам.

Пили

  • Пили (ворсинки, фимбрии) покрывают поверхность бактериальных клеток. Ворсинка представляет собой винтообразно скрученную тонкую полую нить белковой природы.
  • Пили общего типа обеспечивают адгезию (слипание) с клетками хозяина. Их количество огромно и составляет от нескольких сотен до нескольких тысяч. С момента прикрепления начинается любой инфекционный процесс.
  • Половые пили способствуют переносу генетического материала от донора реципиенту. Их количество от 1 до 4-х на одну клетку.

Цитоплазматическая мембрана

  • Цитоплазматическая мембрана располагается под клеточной стенкой и представляет собой липопротеин (до 30% липидов и до 70% протеинов).
  • У разных бактериальных клеток разный липидный состав мембран.
  • Мембранные белки выполняют множество функций. Функциональные белки представляют собой ферменты, благодаря которым на цитоплазматической мембране происходит синтез разных ее компонентов и др.
  • Цитоплазматическая мембрана состоит из 3-х слоев. Двойной фосфолипидный слой пронизан глобулинами, которые обеспечивают транспорт веществ в бактериальную клетку. При нарушении ее работы клетка погибает.
  • Цитоплазматическая мембрана принимает участие в спорообразовании.

Внутреннее строение бактерий

Цитоплазма

Все содержимое клетки, за исключением ядра и клеточной стенки, называется цитоплазмой. В жидкой, бесструктурной фазе цитоплазмы (матриксе) находятся рибосомы, мембранные системы, митохондрии, пластиды и другие структуры, а также запасные питательные вещества. Цитоплазма обладает чрезвычайно сложной, тонкой структурой (слоистая, гранулярная). С помощью электронного микроскопа раскрыты многие интересные детали строения клетки.

Внешний липопротвидный слой протопласта бактерий, обладающий особыми физическими и химическими свойствами, называется цитоплазматической мембраной. Внутри цитоплазмы находятся все жизненно важные структуры и органеллы. Цитоплазматическая мембрана выполняет очень важную роль – регулирует поступление веществ в клетку и выделение наружу продуктов обмена. Через мембрану питательные вещества могут поступать в клетку в результате к активного биохимического процесса с участием ферментов.

Кроме того, в мембране происходит синтез некоторых составных частей клетки, в основном компонентов клеточной стенки и капсулы. Наконец, в цитоплазматической мембране находятся важнейшие ферменты (биологические катализаторы). Упорядоченное расположение ферментов на мембранах позволяет регулировать их активность и предотвращать разрушение одних ферментов другими. С мембраной связаны рибосомы – структурные частицы, на которых синтезируется белок. Мембрана состоит из липопротеидов. Она достаточно прочна и может обеспечить временное существование клетки без оболочки. Цитоплазматическая мембрана составляет до 20% сухой массы клетки.

На электронных фотографиях тонких срезов бактерий цитоплазматическая мембрана представляется в виде непрерывного тяжа толщиной около 75A, состоящего из светлого слоя (липиды), заключенного между двумя более темными (белки). Каждый слой имеет ширину 20–30А. Такая мембрана называется элементарной.

Гранулы

В цитоплазме клеток бактерий часто содержатся гранулы различной формы и размеров. Однако их присутствие нельзя рассматривать как какой-то постоянный признак микроорганизма, обычно оно в значительной степени связано с физическими и химическими условиями среды.

Многие цитоплазматические включения состоят из соединений, которые служат источником энергии и углерода. Эти запасные вещества образуются, когда организм снабжается достаточным количеством питательных веществ, и, наоборот, используются, когда организм попадает в условия, менее благоприятные в отношении питания.

У многих бактерий гранулы состоят из крахмала или других полисахаридов – гликогена и гранулезы. У некоторых бактерий при выращивании на богатой сахарами среде внутри клетки встречаются капельки жира. Другим широко распространенным типом гранулярных включений является волютин (метахроматиновые гранулы). Эти гранулы состоят из полиметафосфата (запасное вещество, включающее остатки фосфорной кислоты). Полиметафосфат служит источником фосфатных групп и энергии для организма. Бактерии чаще накапливают волютин в необычных условиях питания, например на среде, не содержащей серы. В цитоплазме некоторых серных бактерий находятся капельки серы.

Мезосомы

Между плазматической мембраной и клеточной стенкой имеется связь в виде десмозов – мостиков. Цитоплазматическая мембрана часто дает инвагинации – впячивания внутрь клетки. Эти впячивания образуют в цитоплазме особые мембранные структуры, названные мезосомами.

Некоторые виды мезосом представляют собой тельца, отделенные от цитоплазмы собственной мембраной. Внутри таких мембранных мешочков упакованы многочисленные пузырьки и канальцы. Эти структуры выполняют у бактерий самые различные функции. Одни из этих структур – аналоги митохондрий.

Другие выполняют функции зндоплазматической сети или апарата Гольджи. Путем инвагинации цитоплазматической мембраны образуется также фотосинтезирующий аппарат бактерий. После впячивания цитоплазмы мембрана продолжает расти и образует стопки, которые по аналогии с гранулами хлоропластов растений называют стопками тилакоидов. В этих мембранах, часто заполняющих собой большую часть цитоплазмы бактериальной клетки, локализуются пигменты (бактериохлорофилл, каротиноиды) и ферменты (цитохромы), осуществляющие процесс фотосинтеза.

Нуклеоид

У бактерий нет такого ядра, как у высших организмов (эукариотов), а есть его аналог – «ядерный эквивалент» – нуклеоид, который является эволюционно более примитивной формой организации ядерного вещества. Он состоит из одной замкнутой в кольцо двухспиральной нити ДНК длиной 1,1 –1,6 нм, которую рассматривают как одиночную бактериальную хромосому, или генофор. Нуклеоид у прокариот не отграничен от остальной части клетки мембраной – у него отсутствует ядерная оболочка.

В состав структур нуклеоида входят РНК-полимераза, основные белки и отсутствуют гистоны; хромосома закрепляется на цитоплазматической мембране, а у грамположительных бактерий – на мезосомс. Бактериальная хромосома реплицируется поликонсервативным способом: родительская двойная спираль ДНК раскручивается и на матрице каждой полинуклеотидной цепи собирается новая комплементарная цепочка. Нуклеоид не имеет митотического аппарата, и расхождение дочерних ядер обеспечивается ростом цитоплазматической мембраны.

Бактериальное ядро – дифференцированная структура. В зависимости от стадии развития клетки нуклеоид может быть дискретным (прерывистым) и состоять из отдельных фрагментов. Это связано с тем, что деление бактериальной клетки во времени осуществляется после завершения цикла репликации молекулы ДНК и оформления дочерних хромосом.

В нуклеоиде сосредоточен основной объем генетической информации бактериальной клетки. Кроме нуклеоида в клетках многих бактерий обнаружены внехромосомные генетические элементы – плазмиды, представленные небольшими кольцевыми молекулами ДНК, способными к автономной репликации.

Плазмиды

Плазмиды представляют собой автономные молекулы, свернутые в кольцо, двунитевой ДНК. Их масса значительно меньше массы нуклеотида. Несмотря на то, что в ДНК плазмид закодирована наследственная информация, они не являются жизненно важными и необходимыми для бактериальной клетки.

Рибосомы

В цитоплазме бактерий содержатся рибосомы – белок-синтезирующие частицы диаметром 200А. В клетке их насчитывается больше тысячи. Состоят рибосомы из РНК и белка. У бактерий многие рибосомы расположены в цитоплазме свободно, некоторые из них могут быть связаны с мембранами.

Рибосомы являются центрами синтеза белка в клетке. При этом они часто соединяются между собой, образуя агрегаты, называемые полирибосомами или полисомами.

Включения

Включения – продукты метаболизма ядерных и безъядерных клеток. Представляют собой запас питательных веществ: гликоген, крахмал, сера, полифосфат (валютин) и др. Включения часто при окраске приобретают иной вид, чем цвет красителя. По валютину можно диагностировать дифтерийную палочку.

Что же отсутствует в клетках бактерий?

Так как бактерия – это прокариотический микроорганизм, в клетках бактерий всегда отсутствуют множество органоидов, которые присущи эукариотическим организмам:

  • аппарат Гольджи, который помогает клетке тем, что накапливает ненужные вещества, а в последствии выводит их из клетки;
  • пластиды, содержащиеся только в клетках растений, обуславливают их окраску, а также играют значимую роль в фотосинтезе;
  • лизосомы, обладающие особыми ферментами и помогающие расщеплению белков;
  • митохондрии обеспечивают клетки необходимой энергией, а также участвуют в размножении;
  • эндоплазматическая сеть, обеспечивающая транспорт в цитоплазму определённых веществ;
  • клеточный центр.

Также стоит помнить, что у бактерий отсутствует клеточная стенка, посему процессы, такие как пиноцитоз и фагоцитоз не могут протекать.

Особенности процессов бактерий

Являясь особыми микроорганизмами, бактерии приспособлены к существованию в таких условиях, когда кислород может отсутствовать. А само же дыхание у них происходит за счёт мезосом. Также очень интересно то, что зелёные организмы способны точно также фотосинтезировать, как и растения. Но важно учитывать то, что у растений процесс фотозинтеза происходит в хлоропластах, а у бактерий же на мембранах.

Размножение в бактериальной клетке происходит примитивнейшим путём. Созревшая клетка делится надвое, они через некоторое время достигают зрелости, и этот процесс повторяется. В благоприятных условиях за сутки может произойти смена 70-80 поколений. Важно помнить, что бактериям из-за своего строения не доступны такие способы размножения, как митоз и мейоз. Они присущи только эукариотическим клеткам.

Известно, что образование споров – это один из нескольких способов размножения грибов и растений. Но бактерии также умеют образовывать споры, что присуще немногим из их видов. Они обладают данной способностью для того, чтобы переживать особо неблагоприятные условия, которые могут быть опасными для их жизни.

Известны такие виды, которые способны выжить даже в условиях космоса. Такое не могут повторить никакие живые организмы. Бактерии стали прародителями жизни на Земле благодаря простоте их строения. Но то, что они существуют и по сей день, показывает насколько они важны для окружающего нас мира. С их помощью люди могут максимально приблизиться к ответу на вопрос о происхождении жизни на Земле, постоянно изучая, бактерии и узнавая что-то новое.

Самые интересные и увлекательные факты о бактериях

Бактерии стафилококка жаждут человеческой крови

Золотистый стафилококк (Staphylococcus aureus) является распространенным видом бактерий, который поражает около 30 процентов всех людей. У некоторых людей он является частью микробиома (микрофлоры), и встречается как внутри организма, так и на коже или в полости рта. В то время как есть безвредные штаммы стафилококка, другие, такие как метициллинрезистентный золотистый стафилококк (Methicillin-resistant Staphylococcus aureus), создают серьезные проблемы для здоровья, включая инфекции кожи, сердечно-сосудистые заболевания, менингит и болезни пищеварительной системы.

Исследователи Университета Вандербильта обнаружили, что бактерии стафилококка предпочитают кровь человека по сравнению с кровью животных. Эти бактерии неравнодушны к железу, которое содержится в гемоглобине, обнаруженном в эритроцитах. Золотистый стафилококк разрывает клетки крови, чтобы добраться до железа внутри них. Считается, что генетические вариации гемоглобина могут сделать одних людей более желанным для бактерий стафилококка, чем других.

Бактерии вызывают дождь

Исследователи обнаружили, что бактерии в атмосфере могут играть определенную роль в производстве дождя и других форм осадков. Этот процесс начинается, когда бактерии с растений переносятся ветром в атмосферу. На высоте, вокруг них образуется лед, и они начинают расти. Как только замороженные бактерии достигают определенного порога роста, лед начинает таять и возвращается на землю в виде дождя. Бактерии вида Psuedomonas syringae даже были обнаружены в центре крупных частиц града. Они продуцируют особый белок в клеточных мембранах, позволяющий связывать воду уникальным образом, способствуя образованию льда.

Борьба с бактериями, провоцирующими акне

Исследователи выявили, что некоторые штаммы бактерий, вызывающих акне могут фактически помочь предотвратить прыщи. Бактерия, которая вызывает акне – Propionibacterium acnes, обитает в порах нашей кожи. Когда эти бактерии провоцируют иммунный ответ, область на коже набухает, и образуются прыщи.

Однако было обнаружено, что некоторые штаммы бактерий реже вызывают акне. Эти штаммы могут быть причиной того, что у людей со здоровой кожей редко появляются прыщи. Изучая гены штаммов Propionibacterium acnes, собранные у людей с акне и здоровой кожей, исследователи определили штаммп, который был распространен на чистой коже и редко встречался на коже с акне. Будущие исследования будут включать в себя попытки разработать препарат, убивающий только вызывающие угри штаммы бактерии Propionibacterium acnes.

Бактерии на деснах могут привести к сердечно-сосудистым заболеванием

Кто бы мог подумать, что регулярная чистка зубов способна помочь предотвратить заболевания сердца? Ранее исследования выявили связь между болезнью десен и сердечно-сосудистыми заболеваниями. Теперь ученые нашли конкретную связь между этими заболеваниями.

Предполагается, что и бактерии, и люди производят определенные типы белков, называемые стрессовыми белками. Эти белки образуются, когда клетки испытывают различные типы стрессовых состояний. Когда у человека есть инфекция десен, клетки иммунной системы начинают атаковать бактерии. Бактерии производят стресс-белки при атаке, а белые кровяные клетки также атакуют стресс-белки.

Проблема заключается в том, что белые кровяные клетки не могут различать стресс-белки, продуцируемые бактериями, и те, которые продуцируются организмом. В результате клетки иммунной системы также атакуют стрессовые белки, вырабатываемые организмом, что вызывает накопление лейкоцитов в артериях и приводит к атеросклерозу. Кальцинированное сердце является основной причиной сердечно-сосудистых заболеваний.

Почвенные бактерии улучшают обучаемость

Вы знали, что время, проведенное в саду или работа в огороде, может помочь вам лучше учиться? По мнению исследователей, почвенная бактерия Mycobacterium vaccae способна улучшать обучаемость у млекопитающих.

Вероятно, эти бактерии попадают в наш организм путем проглатывания или через дыхание. По предположению ученых, бактерия Mycobacterium vaccae улучшает обучаемость, стимулируя рост нейронов головного мозга, что приводит к увеличению уровня серотонина и снижению беспокойства.

Исследование проводили с использованием мышей, которых кормили живыми бактериями Mycobacterium vaccae. Результаты показали, что мыши, употребляющие бактерии, передвигались лабиринтом гораздо быстрее и с меньшим уровнем беспокойства, чем мыши, которые не питались бактериями. Ученые предполагает, что Mycobacterium vaccae играет определенную роль в улучшении решения новых задач и уменьшении уровня стресса.

Бактериальные силовые машины

Исследователи из Аргоннской национальной лаборатории обнаружили, что бактерия Bacillus subtilis обладают способностью вращать очень маленькие шестерни. Эти бактерии являются аэробными, то есть нуждаются в кислороде для роста и развития. Когда их помещают в раствор с микропузырьками воздуха, бактерии плавают в зубьях шестерни и заставляют ее поворачиваться в определенном направлении.

Требуется несколько сотен бактерий, работающих в унисон, чтобы начать вращение шестерни. Было также обнаружено, что бактерии могут поворачивать несколько соединенных между собой шестеренок. Исследователи смогли контролировать скорость, с которой бактерии крутили шестерни, регулируя количество кислорода в растворе. Уменьшение количества кислорода привело к замедлению бактерий. Удаление кислорода заставляет их полностью прекратить движение.