Дом, дизайн, ремонт, декор. Двор и сад. Своими руками

Дом, дизайн, ремонт, декор. Двор и сад. Своими руками

» » Методики подбора компрессорно-конденсаторных блоков для приточных систем. Пример системы вентиляции с кондиционированием

Методики подбора компрессорно-конденсаторных блоков для приточных систем. Пример системы вентиляции с кондиционированием

Солнечное теплоснабжение – способ отопления жилого дома, который с каждым днем становится все более популярным во многих, в основном развитых, государствах мира. Наибольшими успехами в области солнечной тепловой энергетики на сегодняшний день могут похвастаться в странах западной и центральной Европы. На территории Евросоюза на протяжении последнего десятилетия наблюдается ежегодный рост отрасли возобновляемой энергетики на 10–12%. Такой уровень развития – это очень существенный показатель.

Солнечный коллектор

Одна из наиболее очевидных областей применения солнечной энергетики – это ее использование в целях подогрева воды и воздуха (как теплоносителей). В климатических областях, где преобладает холодная погода, для комфортного проживания людей обязательны расчет и организация систем отопления каждого жилого дома. В них должно присутствовать горячее водоснабжение для различных нужд, к тому же дома необходимо отапливать. Конечно, лучшим вариантом здесь будет применение схемы, где работают автоматизированные системы теплоснабжения.

Больших объемов ежедневного поступления горячей воды в процессе производства требуют промышленные предприятия. В качестве примера можно привести Австралию, где на подогрев жидкого теплоносителя до температуры, не превышающей 100 o C, затрачивается практически 20 процентов всей расходуемой энергии. По этой причине в части развитых стран запада, а в большей мере в Израиле, Северной Америке, Японии и, конечно же, в Австралии, очень быстро происходит расширение производства солнечных отопительных систем.


В ближайшем будущем развитие энергетики, несомненно, будет направлено в пользу использования солнечного излучения. Плотность солнечной радиации на земной поверхности составляет в среднем 250 Вт на один метр квадратный. И это притом, что для обеспечения хозяйственных нужд человека в наименее индустриальных районах достаточно двух Ватт на квадратный метр.

Выгодное отличие солнечной энергии от других отраслей энергетики, использующих процессы сжигания ископаемого топлива, это экологичность получаемой энергии. Работа солнечного оборудования не влечет за собой выделения вредных выбросов в атмосферу.

Выбор схемы применения оборудования, пассивные и активные системы

Существует две схемы использования солнечного излучения в качестве системы отопления для дома. Это активные и пассивные системы. Пассивные системы отопления на солнечной радиации – те, в которых элементом, непосредственно абсорбирующим солнечную радиацию и образующим из нее теплоту, служит сама конструкция дома либо его отдельные части. Этими элементами могут служить забор, кровля, отдельные части здания, построенные на основе определенной схемы. В пассивных системах не используются механические движущиеся части.


Активные системы работают на основе противоположной схемы отопления дома, в них активно используются механические устройства (насосы, двигатели, при их использовании также производят расчет необходимой мощности).

Наиболее простыми по своей конструкции и менее затратными в финансовом плане при монтаже схемы являются системы пассивного действия. Такие схемы отопления не нуждаются в установке дополнительных устройств для абсорбции и последующего распределения солнечного излучения в системе отопления дома. Работа таких систем основана на принципе прямого обогрева жилого помещения прямо через пропускающие свет стены, расположенные на южной стороне. Дополнительную функцию обогрева осуществляют внешние поверхности элементов ограждения дома, которые оборудуются слоем прозрачных экранов.

Для запуска процесса преобразования солнечной радиации в тепловую энергию применяют систему конструкций, основанную на использовании гелиоприёмников с прозрачной поверхностью, где основную функцию играет «парниковый эффект», используются возможности стекла удерживать тепловое излучение, благодаря чему и повышают температуру внутри помещения.

Стоит отметить, что применение только одного из видов систем может быть не совсем оправдано. Зачастую тщательный расчет показывает, что добиться значительного снижения потерь тепла и уменьшения потребностей здания в энергии можно путем применения интегрированных систем. Общая работа и активной, и пассивной системы путем сочетания положительных качеств даст максимальный эффект.


Обычно проводимый расчет эффективности показывает, что пассивное использование излучения солнца обеспечит потребности вашего дома в отоплении приблизительно на 14–16 процентов. Такая система будет важной составляющей процесса получения тепла.

Однако, невзирая на определенные положительные качества пассивных систем, основные возможности для полного обеспечения потребностей здания в тепле все-таки необходимо применение активного отопительного оборудования. Системы, функцией которых является непосредственно поглощение, аккумуляция и распределение солнечной радиации.

Планирование и расчет

Произвести расчет возможности монтажа активных отопительных систем, использующих солнечную энергию (кристаллические солнечные фотоэлементы, солнечные коллекторы), желательно на стадии проектирования здания. Но все же этот момент не носит обязательного характера, установка такой системы возможна и на уже существующее задание независимо от года его постройки (основа для успеха – правильный расчет всей схемы).


Монтаж оборудования осуществляют на южную сторону дома. Такое расположение создает условия для максимального поглощения поступающей солнечной радиации зимой. Фотоэлементы, преобразующие энергию солнца и установленные на неподвижную конструкцию, наиболее эффективны при их монтаже относительно поверхности земли под углом равным географической локации отапливаемого здания. Угол наклона крыши, градус поворота дома к югу – это значимые моменты, которые в обязательном порядке надо учитывать, производя расчет всей схемы отопления.

Солнечные фотоэлементы и коллекторы на солнечном излучении необходимо устанавливать максимально близко к месту энергопотребления. Помните, что чем ближе вы построите ванную и кухню, тем меньше будут потери тепла (в таком варианте можно обойтись и одним солнечным коллектором, который будет обогревать оба помещения). Основным критерием оценки при подборе необходимого вам оборудования является его коэффициент полезного действия.

Отопительные солнечные системы активного действия, делятся на следующие группы по следующим критериям:

  1. Применение дублирующего контура;
  2. Сезонность работы (на протяжении всего года или в определенный сезон);
  3. Функционального назначения – отопительные, снабжение горячей водой и комбинированные системы;
  4. Применяемый теплоноситель – жидкость или воздух;
  5. Примененное техническое решение количества контуров (1, 2 или более).

Общие экономические данные будут служить основным фактором выбора в пользу одного из типов оборудования. Правильно определиться вам поможет грамотный тепловой расчет всей системы. Расчет необходимо выполнять, учитывая показатели каждого конкретного помещения, где намечена организация солнечного отопления и (или) горячего водоснабжения. Стоит учитывать месторасположение строения, климатические природные условия, размер стоимости вытесняемого энергетического ресурса. Правильный расчет и удачный выбор схемы организации теплоснабжения – залог экономической целесообразности применения оборудования солнечной энергетики.


Солнечная система теплоснабжения

Самой распространенной из используемых схем отопления является установка солнечных коллекторов, в которых предусмотрена функция накопления абсорбированной энергии в специальной емкости – аккумуляторе.

На сегодняшний день наибольшее распространение получили двухконтурные схемы отопления жилых помещений, в которых установлена принудительная система циркуляции теплоносителя в коллекторе. Принцип его работы следующий. Подача горячей воды осуществляется из верхней точки накопительного бака, процесс происходит автоматически согласно законам физики. Холодная проточная вода напором подается в нижнюю часть бака, эта вода вытесняет собирающуюся в верхней части бака нагретую, которая далее поступает в систему горячего водоснабжения дома для удовлетворения его хозяйственных нужд и нужд отопления.

Для односемейного дома обычно устанавливают бак накопитель вместимостью от 400 до 800 литров. Для разогрева теплового носителя таких объемов в зависимости от природных условий требуется правильно рассчитать площадь поверхности солнечного коллектора. Также необходимо обосновать использование оборудование экономически.

Стандартный набор оборудования для монтажа отопительной системы на солнечном излучении следующий:

  • Непосредственно сам солнечный коллектор;
  • Крепежная система (опоры, балки, держатели);
  • Накопительный бак;
  • Бак компенсирующих избыточное расширение теплового носителя;
  • Устройство контроля работы насоса;
  • Насос (комплектом клапанов);
  • Температурные датчики;
  • Теплообменные устройства (применяют в схемах с большими объемами);
  • Теплоизолированные трубы;
  • Предохранительная и регулирующая арматура;
  • Фитинги.

Система на основе теплопоглощающих панелей. Такие панели, как правило, применяют на этапе нового строительства. Для их монтажа необходимо построить специальную конструкцию, называемую горячей крышей. Это означает, что панели необходимо вмонтировать непосредственно в конструкцию крыши, при этом используя элементы кровли в качестве составных элементов корпуса оборудования. Такая установка снизит ваши затраты на создание системы отопления, однако потребует высококачественной работы по гидроизоляции стыков устройств и кровли. Такой способ установки оборудования потребует от вас тщательного проектирования и планирования всех этапов работы. Надо решить много задач по разводке труб, размещению накопительного бака, установке насоса, регулировке уклонов. Достаточно много проблем при монтаже придется решить в случае, если здание не самым удачным образом повернуто к югу.

В целом проект солнечных систем отопления будет отличным от других в той или иной степени. Неизменными останутся только базовые принципы системы. Поэтому привести точный перечень необходимых деталей для полного монтажа всей системы невозможно, так как в процессе установки может возникнуть необходимость применения дополнительных элементов и материалов.

Жидкостные отопительные системы

В системах, работающих на основе жидкого теплоносителя, в качестве аккумулирующего вещества применяют обычную воду. Абсорбция энергии происходит в солнечных коллекторах плоской конструкции. Энергия аккумулируется в баке накопителе и расходуется по мере возникновения надобности.

Для передачи энергии от накопителя в здание применяют водо-водяной или водовоздушный теплообменник. Система горячего водообеспечения оборудована дополнительным баком, который называют баком предварительного нагрева. Вода нагревается в нем за счет солнечного излучения и далее поступает в обычный водонагреватель.

Воздушная отопительная система


Такая система в качестве носителя тепла использует воздух. Разогревание теплоносителя осуществляется в плоском солнечном коллекторе, а далее нагретый воздух попадает в отапливаемое помещение либо в специальный накопительный прибор, где абсорбированная энергия накапливается в специальной насадке, которая обогревается поступающим горячим воздухом. Благодаря этой особенности система продолжает снабжать дом теплом даже ночью, когда солнечное излучение не доступно.

Системы с принудительной и естественной циркуляцией

Основа работы систем с естественной циркуляцией состоит в самостоятельном движении теплоносителя. Под воздействием повышающейся температуры он теряет плотность и поэтому стремиться в верхнюю часть устройства. Возникающая разница в величине давлений и заставляет функционировать оборудование.

Системы отопления разделяют следующим образом: на пассивные (см. гл. 5); активные, которые в большинстве используют жидкостные солнечные коллекторы и баки-аккумуляторы; комбинированные.

За рубежом широкое распространение получили системы воздуш­ного отопления, где в качестве аккумуляторов используют конструк­ции здания или специальную каменную засыпку под ним. В нашей стране в этом направлении работают ФТИ АН УзССР и ТбилЗНИИЭП, однако результаты работ явно недостаточны и отлаженных решений не создано, хотя воздушные системы теоретически эффективнее жидкостных, в которых собственно система отопления выполнена низкотемпературной панельно-лучистой или высокотемпературной с обычными нагревательными приборами. В нашей стране здания с жидкостными системами разработаны ИВТАН, ФТИ АН УзССР, ТашЗНИИЭП, ТбилЗНИИЭП, КиевЗНИИЭП и др. и в ряде случаев возведены.

Большой объем информации по активным системам солнечного отопления приведен в вышедшей в 1980 г. книге . Далее же описаны разработанные КиевЗНИИЭП, построенные и испытанные два индиви­дуальных жилых дома с автономными системами солнечного тепло­снабжения: с низкотемпературной панельно-лучистой системой отопле­ния (жилой дом в с. Колесное Одесской обл.) и с тепловым насосом (жилой дом в с. Букурия Молдавской ССР).

При разработке системы солнечного теплоснабжения жилого дома в с. Колесное внесен ряд изменений в архитектурно-строительную часть дома (проект УкрНИИПграждансельскстрой), направленных на его приспособление к требованиям солнечного теплоснабжения: использо­вана эффективная кладка с утеплителем для наружных стен и трой­ное остекление оконных проемов; змеевики системы отопления совме­щены с междуэтажными перекрытиями; предусмотрен подвал для размещения оборудования ; проведено дополнительное утепление чердака и утилизация тепла вытяжного воздуха.

В архитектурно-компоновочном отношении дом выполнен в двух уровнях. На первом этаже размещены передняя, общая комната, спальня, кухня, ванная комната и кладовые, а на втором - две спаль­ни и санузел, предусмотрена электроплита для приготовления пищи. Оборудование системы солнечного теплоснабжения (кроме коллекто­ров) расположено в подвале; дублером системы служат электроводо­нагреватели, что позволяет осуществить единый энерговвод в здание и повысить комфортные качества жилья.

Система солнечного теплоснабжения жилого дома (рис. 4.1) состоит Из трех контуров: теплоприемного циркуляционного и контуров отопления и горячего водоснабжения. В состав первого из них входят солнечные водонагреватели, змеевик-теплообменник бака-аккумуля­тора, циркуляционный насос и теплообменник "труба в трубе" для работы системы в летнее время в режиме с естественной циркуляцией. Оборудование объединено системой трубопроводов с арматурой, контрольно-измерительными приборами и приборами автоматики. В бак-аккумулятор вместимостью 16 м3 вмонтированы двухсекцион­ный змеевиковый теплообменник с площадью поверхности 4,6 м2 для теплоносителя циркуляционного контура и односекционной теплооб­менник с площадью поверхности 1,2 м2 для системы горячего водо­снабжения. Теплоемкость бака с температурой воды в нем +45 °С обеспечивает трехсуточную потребность жилого дома в тепле. Теплооб­менник типа "труба в трубе" поверхностью 1,25 м2 размещен под коньком крыши дома.

Контур отопления состоит из двух последовательно соединенных участков: панельно-лучистого с поточными отопительными панелями, обеспечивающими работу системы в базовом режиме с перепадом температур воды 45 ... 35 °С, и вертикально-однотрубного с конвекто­рами типа "Комфорт", обеспечивающими пиковые нагрузки системы отопления с перепадом температур воды 75 ... 70 °С. Змеевики труб отопительных панелей замоноличены в штукатурно-отделочныи слой круглопустотных панелей потолочного перекрытия. Конвекторы устанавливаются под окнами. Циркуляция в системе отопления - побудительная. Пиковый подогрев воды осуществляется проточным электроводонагревателем ЭПВ-2 мощностью 10 кВт; он же служит дублером системы отопления.

В состав контура горячего водоснабжения входит теплообменник, встроенный в бак-аккумулятор, и второй проточной электроводонагре­ватель в качестве доводчика и дублера системы.

В течение отопительного периода теплота от коллекторов пере­дается теплоносителем (45 %-м водным раствором этиленгликоля) воде в бак-аккумуляторе, которая насосом направляется в змеевики отопительной панели, а затем возвращается вновь в бак-аккумулятор.


Необходимая температура воздуха в помещении дома поддерживается автоматическим регулятором РРТ-2 путем включения и выключения электроводоподогревателя на конвекторном участке системы отопления.

Летом система обеспечивает потребности горячего водоснабжения от теплообменника типа "труба в трубе" при естественной циркуляции теплоносителя в теплоприемном контуре. Переход на побудительную циркуляцию осуществляется с помощью электронного дифференциаль­ного регулятора РРТ-2.

Система солнечного теплоснабжения четырехкомнатного жилого дома в с. Букурия Молдавской ССР запроектирована институтом Молдгипрограждансельстрой под научным руководством КиевЗНИИЭП.

Жилой дом - мансардного типа. На первом этаже находятся общая комната, кухня, постирочная, хозяйственное помещение, а на вто­ром - три спальни. В цокольном этаже размещены гараж, погребла также помещение для оборудования системы солнечного теплоснабже­ния. С домом блокируется хозяйственная постройка, которая вклю­чает в себя летнюю кухню, душ, навес, инвентарную и мастерскую.

Автономная система солнечного теплоснабжения (рис. 4.2) представ­ляет собой комбинированную солнечно-теплонасосную установку, предназначенную для обеспечения нужд отопления (расчетные тепло - потери дома 11 кВт) и горячего водоснабжения в течение всего года. Недостаток солнечной теплоты и теплоты от компрессора теплонасос - ной установки покрывается за счет электроподогрева. Система состоит из четырех контуров: теплоприемного циркуляционного, контуров теплонасосной установки, отопления и горячего водоснабжения.

В состав оборудования теплоприемного контура входят солнечные коллекторы, теплообменник "труба в трубе" и бак-аккумулятор вместимостью 16 м3 с встроенным в него теплообменником с площадью поверхности 6 м2. Солнечные коллекторы конструкции КиевЗНИИЭП с двухслойным остеклением общей площадью 70 м2 размещены в раме на южном скате крыши дома под углом 55° к горизонту. В качестве теплоносителя использован 45 %-й водный раствор этиленгликоля. Теплообменник размещен под коньком крыши, а остальное оборудо­вание расположено в подвальном помещении дома.

В качестве теплонасосной установки служит компрессорно-конден - саторный холодильный агрегат АК1-9 теплопроизводительностью 11,5 кВт и потребляемой мощностью 4,5 кВт. Рабочим агентом тепло­насосной установки является фреон-12. Компрессор - поршневой бессальниковый, конденсатор и испаритель - кожухотрубные с водяным охлаждением.

В состав оборудования контура отопления входят циркуляционный насос, отопительные приборы типа "Комфорт" проточный электроводо­нагреватель ЭПВ-2 в качестве доводчика и дублера. В состав оборудо­вания контура горячего водоснабжения входят емкостный (0,4 м3) водонагреватель типа СТД с поверхностью теплообменника 0,47 м2 и концевой электронагреватель БАС-10/М 4-04 мощностью 1 кВт. Циркуляционные насосы всех контуров - типа ЦВЦ, бессальниковые, вертикальные, малошумные, бесфундаментные.

Система работает следующим образом. Теплоноситель передает тепло от коллекторов воде в баке-аккумуляторое й фреону в испари­теле теплового насоса. Парообразный фреон после сжатия в компрес­соре конденсируется в конденсаторе, нагревая при этом воду в системе отопления и водопроводную воду в системе горячего водоснабжения.

При отсутствии солнечной радиации и израсходовании теплоты, запасенной в баке-аккумуляторе, теплонасосная установка выклю­чается и теплоснабжение дома осуществляется полностью от электро­водонагревателей (электрокотлов). Зимой теплонасосная установка находится в работе только при определенном уровне отрицательных температур наружного воздуха (не ниже - 7 °С) с тем, чтобы исключить замерзание воды в баке-аккумуляторе. Летом система горячего водо­снабжения обеспечивается теплотой в основном при естественной циркуляции теплоносителя через теплообменник типа "труба в трубе". В результате осуществления различных режимов работы комбиниро­ванная солнечно-теплонасосная установка позволяет сберечь теплоты около 40 ГДж/год (результаты эксплуатации этих установок приведе­ны в гл. 8).

Сочетание солнечной энергии и тепловых насосов нашло ^ зое отражение и в разработанном ЦНИИЭП инженерного оборудования

Рис. 4.3. Принципиальная схема системы теплоснабжения в г. Геленджике

1 - солнечный коллектор; 2 - теплообменник догрева с теплоносителем от контура конден­сатора тепловых насосов; 3 - теплообменник догрева с теплоносителем от тепловой сети; 4 - насос контура конденсатора; 5 - тепловой насос; 6 - насос контура испартеля; 7 - теплообменник подогрева (охлаждения) воды контура испарителя (конденсатора); 8 - Теплообменник подогрева исходной (сырой) воды; 9 - насос горячего водоснабжения; 10 - Аккумуляторные баки; 11 - теплообменник солнечного контура; 12 - насос солнечного контура

Проекте теплоснабжения гостиничного комплекса "Приветливый берег" в г. Геленджике {рис. 4.3).

Основу солнечно-теплонасосной установки составляют: плоские солнечные коллекторы общей площадью 690 м2 и тре серийно выпуска­емые холодильные машины MKT 220-2-0, работающие в режиме тепло­вого насоса. Расчетная годовая выработка теплоты составляет около 21000 ГДж, в том числе солнечной установкой - 1470 ГДж.

Низкопотенциальным источником тепла для тепловых насосов служит морская вода. Для обеспечения безкоррозионного и безнакип­ного режима работы поверхностей нагрева коллекторов, трубопрово­дов и конденсаторов их заполняют умягченной и деаэрированной водой тепловой сети. По сравнению с традиционной схемой теплоснаб­жения от котельной привлечение нетрадиционных источников тепла -

Солнца и морской воды, позволяет сэкономить около 500 т усл. топл /год.

Другим характерным примером использования новых источников энергии является проект теплоснабжения усадебного дома с помощью

Солнечно-теплонасосной установки. Проект предусматривает круглого­дичное полное удовлетворение потребностей отопления и горячего водоснабжения усадебного дома мансардного типа жилой площадью 55 м2. Низкопотенциальным источником теплоты для теплового насоса служит грунт. Предположительный экономический эффект от внедре­ния системы - не менее 300 руб. на квартиру по сравнению с тради­ционным вариантом теплоснабжения от твердотопливного аппарата.

Соорудить солнечное отопление частного дома своими руками – не такая и сложная задача, как кажется неосведомленному обывателю. Для этого понадобятся навыки сварщика и материалы, доступные в любом строительном магазине.

Актуальность создания солнечного отопления частного дома своими руками

Получить полную автономию – мечта каждого владельца, затевающего частное строительство. Но действительно ли солнечная энергия способна отапливать жилой дом, особенно если устройство для ее накопления собрано в гараже?

В зависимости от региона солнечный поток может давать от 50 Вт/кв.м в пасмурный день до 1400 Вт/кв.м при ясном летнем небе. При таких показателях даже примитивный коллектор с низким КПД (45-50%) и площадью 15 кв.м. может выдавать в год около 7000-10000 кВт*ч. А это сэкономленные 3 тонны дров для твердотопливного котла!

  • в среднем на квадратный метр устройства приходится 900 Вт;
  • чтобы повысить температуру воды, необходимо затратить 1,16 Вт;
  • учитывая также теплопотери коллектора, 1 кв.м сможет нагреть около 10 литров воды в час до температуры 70 градусов;
  • для обеспечения 50 л горячей воды, необходимой одному человеку, понадобится затратить 3,48 кВт;
  • сверившись с данными гидрометцентра о мощности солнечного излучения (Вт/кв.м) в регионе, необходимо 3480 Вт разделить на получившуюся мощность солнечного излучения – это и будет нужная площадь солнечного коллектора для нагрева 50 л воды.

Как становится понятно, эффективное автономное отопление исключительно с использованием солнечной энергии осуществить довольно проблематично. Ведь в хмурую зимнюю пору солнечного излучения крайне мало, а разместить на участке коллектор площадью 120 кв.м. не всегда получится.

Так неужели солнечные коллекторы нефункциональны? Не стоит заранее сбрасывать их со счетов. Так, с помощью подобного накопителя можно летом обходиться без бойлера – мощности будет достаточно для обеспечения семьи горячей водой. Зимой же удастся сократить затраты на энергоносители, если подавать уже нагретую воду из солнечного коллектора в электрический бойлер.
Кроме того, солнечный коллектор станет отличным помощником тепловому насосу в доме с низкотемпературным отоплением (теплыми полами).

Так, зимой нагретый теплоноситель будет использоваться в теплых полах, а летом излишки тепла можно отправить в геотермальный контур. Это позволит снизить мощность теплового насоса.
Ведь геотермальное тепло не возобновляется, так что со временем в толще грунта образовывается все увеличивающийся «холодный мешок». Например, в обычном геотермальном контуре на начало отопительного сезона температура составляет +5 градусов, а в конце -2С. При подогреве же начальная температура поднимается до +15 С, а к концу отопительного сезона не падает ниже +2С.

Устройство самодельного солнечного коллектора

Для уверенного в своих силах мастера собрать тепловой коллектор не составит труда. Можно начать с небольшого устройства для обеспечения горячей воды на даче, а в случае успешного эксперимента перейти к созданию полноценной солнечной станции.

Плоский солнечный коллектор из металлических труб

Самый простой в исполнении коллектор – плоский. Для его устройства понадобится:

  • сварочный аппарат;
  • трубы из нержавеющей стали или меди;
  • стальной лист;
  • закаленное стекло или поликарбонат;
  • деревянные доски для рамы;
  • негорючий утеплитель, способный выдержать нагретый до 200 градусов металл;
  • черная матовая краска, устойчивая к высоким температурам.

Сборка солнечного коллектора довольно проста:

  1. Трубы привариваются к стальному листу – он выступает в роли адсорбера солнечной энергии, поэтому прилегание труб должно быть максимально плотным. Все красится в матовый черный цвет.
  2. На лист с трубами кладется рама так, чтобы трубы оказались с внутренней стороны. Просверливаются отверстия для входа и выхода труб. Укладывается утеплитель. Если используется гигроскопичный материал, нужно позаботиться о гидроизоляции – ведь намокших утеплитель больше не будет защищать трубы от охлаждения.
  3. Утеплитель фиксируется листом ОСБ, все стыки заполняются герметиком.
  4. Со стороны адсорбера кладется прозрачное стекло или поликарбонат с небольшим воздушным зазором. Оно служит для предотвращения остывание стального листа.
  5. Фиксировать стекло можно с помощью деревянных оконных штапиков, предварительно проложив герметик. Он предотвратит попадание холодного воздуха и защитит стекло от сжатия рамы при нагревании и охлаждении.

Для полноценного функционирования коллектора понадобится накопительный бак. Его можно сделать из пластиковой бочки, утепленной снаружи, в которой спиралью уложен теплообменник, соединенный с солнечным коллектором. Вход нагретой воды должен располагаться сверху, а выход холодной – снизу.

Важно правильно разместить бак и коллектор. Чтобы обеспечить естественную циркуляцию воды, бак должен находиться выше коллектора, а трубы – иметь постоянный наклон.

Солнечный нагреватель из подручных материалов

Если со сварочным аппаратом дружбу свести так и не удалось, можно сделать простой солнечный нагреватель из того, что под рукой. Например, из жестяных банок. Для этого в дне делаются отверстия, сами банки скрепляются друг с другом герметиком, на него же садятся в местах соединения с ПВХ-трубами. Красятся в черный цвет и укладываются в раму под стекло также, как и обычные трубы.

Фасад дома из солнечных батарей

Почему бы вместо обычного сайдинга не отделать дом чем-то полезным? Например, сделав с южной стороны на всю стену солнечный нагреватель.

Такое решение позволит оптимизировать расходы на отопление сразу по двум направлениям – снизить затраты на энергоноситель и существенно сократить теплопотери за счет дополнительного утепления фасада.

Устройство просто до безобразия и не требует специальных инструментов:

  • на утеплитель уложен окрашенный оцинкованный лист;
  • поверх уложена нержавеющая гофрированная труба, также выкрашенная в черный;
  • все прикрыто листами поликарбоната и зафиксировано алюминиевыми уголками.

Если же и этот способ кажется сложным, на видео представлен вариант из жести, полипропиленовых труб и пленки. Куда уж проще!

С ростом цен на энергоносители все актуальнее становится использование альтернативных источников энергии. А так как отопление у многих основная статья расходов, то об отоплении речь в первую очередь: платить приходится практически круглый год и немалые суммы. При желании сэкономить, первым на ум приходит солнечное тепло: мощный и совершенно бесплатный источник энергии. И использовать его вполне реально. Причем оборудование стоит хоть и дорого, но в разы дешевле, чем тепловые насосы. О том, как может быть использована энергия солнца для отопления дома, поговорим подробнее.

Отопление от солнца: за и против

Если говорить об использовании солнечной энергии для отопления, то нужно иметь в виду, что существуют два разных устройства для преобразования солнечной энергии:

Оба варианта имеют свои особенности. Хотя сразу нужно сказать, какой бы из их вы ни выбрали, не спешите отказываться от той системы отопления, которая у вас есть. Солнце встает, конечно, каждое утро, но вот не всегда на ваши солнечные элементы будет попадать достаточно света. Самое разумное решение — сделать комбинированную систему. Когда энергии солнца достаточно, второй источник тепла работать не будет. Этим вы и обезопасите себя, и жить будете в комфортных условиях, и сэкономите.

Если желания или возможности ставить две системы нет, ваше солнечное отопление должно иметь, как минимум, двукратный запас по мощности. Тогда точно можно сказать, что тепло у вас будет в любом случае.

Достоинства использования солнечной энергии для отопления:


Недостатки:

  • Зависимость количества поступающего тепла от погоды и региона.
  • Для гарантированного отопления потребуется система, которая может работать параллельно с гелиосистемой отопления. Многие производители отопительного оборудования предусматривают такую возможность. В частности европейские производители настенных газовых котлов предусматривают совместную работу с солнечным отоплением (например, котлы Baxi). Даже если у вас установлено оборудование, у которого такой возможности нет, можно согласовать работу отопительной системы при помощи контролера.
  • Солидные финансовые вложения на стартовом.
  • Периодичное обслуживание: трубки и панели нужно очищать от налипшего мусора и мыть от пыли.
  • Некоторые из жидкостных солнечных коллекторов не могут работать при очень низких температурах. В преддверии сильных морозов жидкость приходится сливать. Но это касается не всех моделей и не всех жидкостей.

Теперь рассмотрим подробнее каждый из типов солнечных нагревательных элементов.

Солнечные коллекторы

Для солнечного отопления используют именно гелиоколлекторы. Эти установки при помощи тепла солнца нагревают жидкость-теплоноситель, которую потом можно использовать в системе водяного отопления. Специфика в том, что солнечный водонагреватель для отопления дома выдает только температуру 45-60 о С, а самую высокую эффективность показывает при 35 о С на выходе. Потому рекомендованы такие системы для использования в паре с теплыми водяными полами. Если отказываться от радиаторов вам не хочется, или увеличивайте количество секций (раза в два примерно) или подогревайте теплоноситель.

Для обеспечения дома теплой водой и для водяного отопления можно использовать солнечные коллекторы (плоские и трубчатые)

Теперь о видах солнечных коллекторов. Конструктивно есть две модификации:

  • плоские;
  • трубчатые.

В каждой из групп есть вариации и по материалам, и по конструкции, но принцип действия у них один: по трубкам бежит теплоноситель, который нагревается от солнца. Вот только конструкции абсолютно разные.

Плоские солнечные коллекторы

Эти гелиоустановки для отопления имеют простую конструкцию и потому именно их можно при желании изготовить своими руками. На металлической раме закреплено прочное дно. Сверху уложен слой теплоизоляции. Изолируются для уменьшения потерь и стенки корпуса. Затем идет слой адсорбера — материала, который хорошо поглощает солнечное излучение, превращая его в тепло. Этот слой обычно имеет черный цвет. На адсорбере закреплены трубы, по которым течет теплоноситель. Сверху вся эта конструкция закрывается прозрачной крышкой. Материалом для крышки может быть закаленное стекло или один из пластиков (чаще всего это поликарбонат). В некоторых моделях светопропускающий материал крышки может проходить специальную обработку: для уменьшения отражающей способности его делают не гладким, а чуть матовым.

Трубы в плоском солнечном коллекторе обычно уложены змейкой, имеется два отверстия — впускное и выпускное. Может быть реализовано однотрубное и двухтрубное подключение. Это кому как нравится. Но для нормального теплообмена необходим насос. Возможна и самотечная система, но она будет очень неэффективной из-за небольшой скорости движения теплоносителя. Именно этого типа солнечный коллектор и используют для отопления, хотя с его помощью можно эффективно греть воду для ГВС.

Есть вариант самотечного коллектора, но его применяют в основном для подогрева воды. Называют такую конструкцию еще пластиковым солнечным коллектором. Это две пластины из прозрачного пластика, герметично закрепленные на корпусе. Внутри устроен лабиринт для продвижения воды. Иногда нижняя панель бывает окрашена в черный цвет. Имеется два отверстия — впускное и выпускное. Вода подается внутрь, по мере продвижения по лабиринту греется солнцем, и выходит уже теплой. Такая схема хорошо работает с резервуаром для воды и легко нагревает воду для ГВС. Это современная замена обычной бочке, установленной на летнем душе. Причем более эффективная замена.

Насколько эффективны солнечные коллекторы? Среди всех бытовых гелиоустановок на сегодня они показывают лучшие результаты: их КПД 72-75%. Но не все так хорошо:

  • они не работают ночью и плохо работают в пасмурную погоду;
  • большие потери тепла, особенно при ветре;
  • низкая ремонтопригодность: если что-то выходит из строя, то менять нужно значительную часть, или всю панель полностью.

Тем не менее, часто отопление частного дома от солнца делают именно при помощи этих гелиоустановок. Такие установки популярны в южных странах с активным излучением и положительными температурами в зимний период. Для наших зим они не подходят, но в летний сезон показывают хорошие результаты.

Воздушный коллектор

Эта установка может быть использована для воздушного отопления дома. Конструктивно она очень напоминает описанный выше пластиковый коллектор, но циркулирует и нагревается в нем воздух. Такие устройства навешиваются на стены. Действовать они могут двумя способами: если воздушный гелионагреватель герметичен, воздух забирается из помещения, нагревается и возвращается в то же помещение.

Есть другой вариант. В нем обогрев совмещен с вентиляцией. В наружном корпусе воздушного коллектора имеются отверстия. Через них внутрь конструкции поступает холодный воздух. Проходя через лабиринт, от солнечных лучей он нагревается, а затем подогретым попадает в помещение.

Такое отопление дома будет более-менее эффективным, если установка будет занимать всю южную стену, и при этом тени на этой стене не будет.

Трубчатые коллекторы

Тут тоже циркулирует теплоноситель по трубам, но каждая из таких теплообменных труб вставлена в стеклянную колбу. Все они соединяются в манифолде (manifold), который, по сути, является гребенкой.

Схема трубчатого коллектора (кликните для увеличения размера картинки)

Трубчатые коллекторы имеют два типа трубок: коаксиальные и перьевые. Коаксиальные — труба в трубе — вложены одна в другую и их края запаяны. Внутри между двумя стенками создается разреженная безвоздушная среда. Потому такие трубки называют еще вакуумными. Перьевые трубки — это обычная трубка, запаянная с одной стороны. А перьевыми их называют потому, что для повышения теплоотдачи в них вставляется пластина адсорберная, которая имеет изогнутые края и чем-то напоминает перо.

Кроме того в разные корпуса могут быть вставлены теплообменники разного типа. Первые — это тепловые каналы Heat-pipe (Хит пайп). Это целая система преобразования солнечного света в тепловую энергию. Heat-pipe — это полая медная трубка небольшого диаметра, запаянная на одном конце. На втором находится массивный наконечник. В трубку залито вещество с низкой температурой кипения. При нагревании вещество начинает кипеть, часть его переходит в газообразное состояние и поднимается по трубке вверх. По пути от нагретых стенок трубки оно все больше нагревается. Попадает в верхнюю часть, где находится некоторое время. За это время часть тепла газ передает массивному наконечнику, постепенно охлаждается, конденсируется и оседает вниз, где процесс снова повторяется.

Второй способ — U-type — это традиционная трубка, заполненная теплоносителем. Тут никаких новостей или сюрпризов. Все как обычно: с одной стороны входит теплоноситель, проходя по трубке, нагревается от солнечного света. Несмотря на свою простоту этот вид теплообменников эффективнее. Но используется он реже. А все потому, что солнечные водонагреватели такого типа составляют собой единое целое. При повреждении одной трубки приходится менять вся секцию.

Трубчатые коллекторы с системой Heat-pipe стоят дороже, показывают меньшую эффективность, но используются чаще. А все потому, что поврежденную трубку поменять можно за пару минут. Причем, если колба использована коаксиальная, то трубка тоже может быть отремонтирована. Просто она разбирается (снимается верхняя заглушка) и поврежденный элемент (тепловой канал или сама колба) заменяется на исправный. Затем трубка вставляется на место.

Какой коллектор лучше для отопления

Для южных регионов с мягкой зимой и большим количеством солнечных дней в году лучший вариант — плоский коллектор. При таком климате он показывает высшую продуктивность.

Для регионов с более суровым климатом подходят трубчатые коллекторы. Причем для суровых зим больше подходят именно системы с Heat-pipe: они греют даже ночью и даже в пасмурную погоду, собирая большую часть спектра солнечного излучения. Они не боятся низких температур, но точный диапазон температур нужно уточнять: он зависит от вещества, находящегося в тепловом канале.

Эти системы при грамотном расчете могут быть основными, но чаще они просто экономят затраты на отопление от другого, платного источника энергии.

Еще одним вспомогательным отоплением может быть воздушный коллектор. Его можно сделать во всю стену, причем он легко реализуется своими руками. Он отлично подойдет для отопления гаража или дачи. Причем проблемы с недостаточным нагревом могут возникнуть не зимой, как вы ожидаете, а осенью. При морозе и снеге энергии солнца в разы больше, чем в пасмурную дождливую погоду.

Солнечные батареи

Слыша слова «солнечная энергетика» мы в первую очередь думаем именно о батареях, которые преобразуют свет в электричество. И делают это специальные фотоэлектрические преобразователи. Они выпускаются промышленностью из разных полупроводников. Чаще всего для бытового использования мы применяем кремниевые фотоэлементы. Они имеют самую низкую цену и показывают достаточно приличную производительность: 20-25%.

Солнечные батареи для частного дома в некоторых странах — обычное явление

Напрямую использовать солнечные батареи для отопления можно лишь в том случае, если котел или другой отопительный прибор на электричестве вы подключите к этому источнику тока. Также солнечные панели в совокупности с электро-аккумуляторами можно интегрировать в систему снабжения дома электричеством и таким образом уменьшать приходящие ежемесячно счета за использованную электроэнергию. В принципе, вполне реально полностью обеспечить потребности семьи от этих установок. Просто средств и площадей потребуется много. В среднем с квадратного метра панели можно получить 120-150Вт. Вот и считайте, сколько квадратов кровли или придомовой территории должно быть занято такими панелями.

Особенности отопления солнечным теплом

Целесообразность устройства системы солнечного отопления у многих вызывает сомнения. Основной довод — это дорого и никогда себя не окупит. С тем, что это дорого, приходится согласиться: цены на оборудование немаленькие. Но никто не мешает вам начать с малого. Например, для оценки эффективности и практичности идеи сделать подобную установку самому. Затрат минимум, а представление будете иметь из первых рук. Потом уже будете решать стоит со всем этим связываться или нет. Вот только в чем дело: все негативные сообщения от теоретиков. От практиков не встречалось ни одного. Идет активное выяснение способов улучшения, переделок, но никто не сказал, что затея бесполезна. Это о чем-то говорит.

Теперь о том, что установка системы солнечного отопления никогда не окупится. Пока срок окупае

мости в нашей стране большой. Он сравним со сроком эксплуатации солнечных коллекторов или батарей. Но если посмотреть динамику роста цен на все энергоносители, то можно предположить, что вскоре он сократится до вполне приемлемых сроков.

Теперь собственно о том, как сделать систему. Прежде всего, нужно определить потребность вашего дома и семи в тепле и горячей воде. Общая методика расчета системы солнечного отопления следующая:

  • Зная, в каком регионе находится дом, вы можете узнать, сколько солнечного света приходится на 1м 2 площади в каждом месяце года. Специалисты это называют инсоляцией. Исходя из этих данных, вы затем сможете прикинуть, сколько солнечных панелей вам необходимо. Но сначала нужно определить, сколько тепла понадобится на подготовку ГВС и отопление.
  • Если счетчик горячей воды у вас есть, то вы знаете объемы горячей воды, которые вы тратите ежемесячно. Выведите средние данные расхода за месяц или считайте по максимальному расходу — это кто как хочет. Также у вас должны иметься данные о тепловых потерях дома.
  • Присмотрите солнечные нагреватели, которые хотели бы поставить. Имея данные по их производительности, вы сможете примерно определить количество элементов, необходимое на покрытие ваших потребностей.

Кроме определения количества составляющих гелиосистемы, понадобится определить объем бака, в котором будет накапливаться горячая вода для ГВС. Это легко можно сделать, зная фактический расход вашей семьи. Если у вас установлен счетчик на ГВС, и вы имеете данные за несколько лет, можно вывести среднюю норму потребления в день (средний расход в месяц поделить на количество дней). Вот примерно такой объем бака вам нужен. Но бак нужно брать с запасом в 20% или около того. На всякий случай.

Если ГВС или счетчика нет, можно воспользоваться нормами потребления. Один человек в сутки в среднем расходует 100-150 литров воды. Зная, сколько человек постоянно проживают в доме, вы рассчитаете требуемый объем бака: норма умножается на количество жильцов.

Сразу нужно сказать, что рациональной (с точки зрения окупаемости) для средней полосы России является система солнечного отопления, которая покрывает порядка 30% потребности в тепле и полностью снабжает горячей водой. Это усредненный результат: в какие-то месяцы отопление будет на 70-80% обеспечиваться гелиосистемой, а в какие-то (декабрь-январь) всего на 10%. И снова-таки многое зависит от типа солнечных батарей и от региона проживания.

Причем дело не только в «севернее» или «южнее». Дело в количестве солнечных дней. Например, на очень холодной Чукотке солнечное отопление будет очень эффективным: там почти всегда светит солнце. В гораздо более мягком климате Англии, с вечными туманами, его эффективность крайне низка.
;

Итоги

Несмотря на множество критиков, которые говорят о неэффективности солнечной энергетики и слишком большом сроке окупаемости, все больше людей хоть частично переходят на альтернативные источники. Кроме экономии многих привлекает независимость от государства и его ценовой политики. Чтобы не жалеть о напрасно вложенных суммах, можно сначала провести эксперимент: изготовить одну из солнечных установок своими руками и решить для себя насколько это вас привлекает (или нет).